A novel integration of a green power-to-ammonia to power system: Reversible solid oxide fuel cell for hydrogen and power production coupled with an ammonia synthesis unit
Renewable energy is a key solution in maintaining global warming below 2 °C. However, its intermittency necessitates the need for energy conversion technologies to meet demand when there are insufficient renewable energy resources. This study aims to tackle these challenges by thermo-electrochemical modelling and simulation of a reversible solid oxide fuel cell (RSOFC) and integration with the Haber Bosch process. The novelty of the proposed system is usage of nitrogen-rich fuel electrode exhaust gas for ammonia synthesis during fuel cell mode, which is usually combusted to prevent release of highly flammable hydrogen into the environment. RSOFC round-trip efficiencies of 41–53% have been attained when producing excess ammonia (144 kg NH3/hr) for the market and in-house consumption respectively. The designed system has the lowest reported ammonia electricity consumption of 6.4–8.21 kWh/kg NH3, power-to-hydrogen, power-to-ammonia, and power-generation efficiencies of 80%, 55–71% and, 64–66%.
Funding
Commonwealth Scholarship Commission in the UK and British Council Newton-institutional links project (GA No:332427068)
History
School
Mechanical, Electrical and Manufacturing Engineering
This is an Open Access Article. It is published by Elsevier under the Creative Commons Attribution 4.0 International Licence (CC BY 4.0). Full details of this licence are available at: https://creativecommons.org/licenses/by/4.0/