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Abstract

Cardiac abnormality detection from Electrocardiogram (ECG) signals is a

common task for cardiologists. To facilitate efficient and objective detec-

tion, automated ECG classification by using deep learning based methods

have been developed in recent years. Despite their impressive performance,

these methods perform poorly when presented with cardiac abnormalities

that are not well represented, or absent, in the training data. To this

end, we propose a novel one-class classification based ECG anomaly de-

tection generative adversarial network (GAN). Specifically, we embedded

a Bi-directional Long-Short Term Memory (Bi-LSTM) layer into a GAN

architecture and used a mini-batch discrimination training strategy in the
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discriminator to synthesis ECG signals. Our method generates samples to

match the data distribution from normal signals of healthy group so that a

generalised anomaly detector can be built reliably. The experimental results

demonstrate our method outperforms several state-of-the-art semi-supervised

learning based ECG anomaly detection algorithms and robustly detects the

unknown anomaly class in the MIT-BIH arrhythmia database. Experiments

show that our method achieves the accuracy of 95.5% and AUC of 95.9%

which outperforms the most competitive baseline by 0.7% and 1.7% respec-

tively. Our method may prove to be a helpful diagnostic method for helping

cardiologists identify arrhythmias.

Keywords: Electrocardiogram, Generative Adversarial Networks,

Semi-supervised learning, One-class classification, MIT-BIH

1. Introduction

Electrocardiograms (ECG) are routinely used in clinical practice to iden-

tify cardiac abnormalities. They provide an inexpensive and non-invasive tool

to facilitate accurate diagnosis of cardiovascular conditions, e.g., arrhythmia,

coronary heart disease, heart attack and cardiomyopathy [1]. Correct inter-

pretation of ECGs is time-consuming and requires expertise. Consequently,

to identify cardiac abnormalities, researchers have worked to create auto-

matic ECG signal classification algorithms and systems that require little

human input [2, 3]. Deep neural network (DNN) models have supported

state-of-the-art performances in these algorithms [4, 5, 6].

While DNN classifiers have primarily been trained in a supervised manner

[6, 7, 8], one-class classification ECG anomaly detection is also an active
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research topic [9, 10, 11], which involves training a classifier with the presence

of data from only one class [12]. It is typically used when there is high class

imbalance. This often occurs in ECG datasets, in which there are many

examples of normal ECG and far fewer examples of the myriad types of ECG

abnormalities. With the development of advanced ECG anomaly detection,

a more generalisable and reliable system could handle large variations in real

clinical scenarios compared to those supervised methods [13].

An early attempt to detect ECG anomaly based used One-Class Support

Vector Machines to determine the characteristics of a normal ECG [2]. To im-

prove the performance when processing the high-dimensionality of the ECG

data, more modern approaches using neural generative models, including

variational autoencoder (VAE) and generative adversarial networks (GAN),

have been proposed for anomaly detection [14, 15]. For example, Shin et al.

[11] deployed AnoGAN [16] to synthesize ECG signals so that the augmented

data could improve the model generalisation to enhance the anomaly detec-

tion. Although improved performance is evidenced in this work, the tempo-

ral constraint of ECG signals is not explored during the generative modelling

training process.

In this paper, we propose a novel anomaly detection GAN (ECG-ADGAN)

method for one-class ECG classification. Specifically, we embed a Bi-directional

Long-Short Term Memory (Bi-LSTM) network into the GAN generator so

that the temporal patterns in ECG signals are preserved. Further, we use a

mini-batch strategy during GAN discriminator training to prevent the occur-

rence of mode collapse and improve the stability of the GAN training. The

contributions of our paper are as follows:
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• A novel one class classification GAN method is proposed to detect

cardiac abnormalities. When training a cardiac anomaly detector in a

semi-supervised learning manner, the model generalisation is enhanced

by aligning synthesised data to real data distribution of ECG signals

from a healthy control group.

• A Bi-LSTM layer is embedded into the generator of the neuro genera-

tive model to enforce the temporal constraint for better model training.

• Our experiments demonstrate that the mini-batch training guarantees

the convergence stability of our model so that a reliable anomaly de-

tector is achieved.

The remainder of the paper is structured as follows. We present related

work in Section 2. The proposed method is explained in detail in Section

3. In Section 4, experimental results demonstrate the effectiveness of our

proposed method when compared to several state-of-the-art semi-supervised

learning algorithms. Finally, Section 5 presents conclusions and future work.

2. Related Work

2.1. Supervised learning based ECG arrhythmia classification

Supervised learning based automatic ECG signal classification has been

developed for many years [17, 18]. Recently, DNN based methods have

become dominant to achieve almost perfect performance when working on

small-scale dataset, e.g., MIT BIH Arrhythmia Database [19]. For instances,

Xu et al. [4] designed a 3-layer DNN algorithm to classify well-aligned heart-

beat segments; Chu et al. [5] proposed to extract cross-lead features via
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a 2D CNN and use a Long Short-Term Memory (LSTM) network for the

classification; Maweu et al. [20] propose a modular framework, CNN Expla-

nations Framework for ECG Signals (CEFEs), for interpretable explanations;

Mousavi et al. [21] introduced to extract feature representations via an au-

toencoder to train a bidirectional Recurrent Neural Network (RNN) for the

arrhythmia detection.

Latest research focuses on improving model reliability and its generalis-

ability when adapting a model to new datasets or a new working environment.

Sellami et al. [7] used a residual network (Resnet) architecture and designed

a batched weight loss function to deal with data imbalance problem. Zhang

et al. [22] proposed a spatio-temporal attention-based convolutional recur-

rent neural network (STA-CRNN) to focus on representative features along

both spatial and temporal axes. To provide a large-scale dataset that facili-

tates the build of reliable models, Alday et al. [23] organized the computing

in cardiology challenge with large amount of training data which is catego-

rized into 27 cardiac abnormalities. Working on the PhysioNet-2021 dataset,

Shang et al. [24] proposed a multi-source adversarial feature learning to en-

hance model geralisability via extracting domain-invariant and discriminative

representations.

Although models trained in a supervised manner achieved state-of-the-

art performances in automated ECG signal classification tasks, they may be

less reliable for identifying unknown cardiac abnormalities or those with few

training examples. Thus, this is the main challenge to achieve a generalisable

DNN model that can be applied in real applications [10].

5



2.2. GAN-based Anomaly Detection

Anomaly detection (AD) refers to a binary classification task that iden-

tifies data outliers which are significantly deviated from the distribution of

normal data [25]. Unlike supervised learning based methods, AD typically

use semi-supervised learning where outlier samples are rare or totally un-

available. Ruff et al. [15] summarise three main types of AD models: classi-

fication based methods, probabilistic methods and reconstruction methods.

Each type has its advantages to deal with their specific tasks related to their

assumptions. For instances, one class SVM [26] is one of the classification

based methods, which assumes sufficient normal data points are provided

so that the distance from the decision boundary to the origin is maximised;

while probabilistic methods, e.g., Gaussian Mixture Model [27] and Kernel

Density Estimation [28], assume the normal data obeys either a parametric

or a non-parametric distribution so that the unseen anomalies located with

low-density areas are detected. Due to the success of deep neural networks on

applications with complex data topology, neural generative models, which are

considered as hybrid probabilistic and reconstruction methods, have recently

been emerging for the AD tasks.

One such deep learning method is GAN, which was first developed to gen-

erate realistic synthetic images [29, 30]. Due to its capability to synthesise

samples that match a generative data distribution with high-dimensional and

complex data, GAN has also been applied to various anomaly detection tasks

[16, 25, 15]. In [16], the deep convolutional GAN architecture proposed in

[30] was used to fit data distribution of optical coherence tomography (OCT)

images of retina so that anomaly regions in these OCT images are identified.
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In [25], Liu et al. also proposed a GAN based method for anomaly detec-

tion. They designed a multiple-generator structure to avoid mode collapsing

problem so that the reference distribution of the entire dataset is fitted well

by the GANs. As summarised in [15], GANs have advantage over many tra-

ditional anomaly detection methods since it combines both the strengths of

probabilistic and reconstruction methods.

GAN networks have recently been witnessed in ECG anomaly detection

tasks [14, 11]. For instances, in [14], BeatGAN was proposed to automati-

cally detect anomalous beats so that clinicians could improve their diagnosis

efficiency based on the arrhythmic ECG signals. In this work, they prove that

GAN based methods achieve much better detection accuracy when compared

to autoencoder based methods; in [11], AnoGAN was used to synthesise more

data samples to improve the decision boundary for anomaly detection.

3. ECG-ADGAN model

In this section, we describe our proposed model in detail. We first il-

lustrate and present the network architecture of our model. Following this,

we explain our mini-batch discriminator training strategy, showing why it

improves GAN convergence stability. Finally, we provide the model imple-

mentation detail for its reproducibility.

3.1. Network architecture and training stage

The ECG-ADGAN model architecture is depicted in Fig. 1. Similar

to other GAN models, our model consists of a generator to synthesise the

ECG signal and a discriminator to identify anomalous signals. The generator

takes a 100-dimensional random vector as its input to feed into a Bi-LSTM
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layer that acts to extract temporal features in a latent space. Subsequently,

this representation is processed by several 1-D convolutional and upsampling

layers before it is connected to a dense layer to generate a synthesised ECG

signal. To ensure the synthesised data fit well with the distribution of real

samples, a discriminator is updated to distinguish synthesised signals from

real signals. As illustrated in Fig. 1, the discriminator is composed of four

1-D convolutional layers followed by max pooling layer and one dense layer

with 64 neurons.

Real/
Fake

Conv1D(1, 400)

Conv1D(32, 100)

Upsampling1D(32, 200)

Conv1D(16, 200)

Dense(216)

Output(1, 216)

Bi-LSTM(32, 100)

Input(1, 100)

Upsampling1D(16, 400)

Conv1D(8, 400)

Flatten(400)

LeakyReLU(32, 100)

LeakyReLU(16,200 )

LeakyReLU(8, 400)

Activation(216)

Reshape(1, 216)

z

D

G

Input(1, 216)

Conv1D(8, 216)

Dense(1)

Output(1)

MaxPooling1D(8, 72)

Conv1D(16, 72)

MaxPooling1D(16, 36)

Conv1D(32, 18)

MaxPooling1D(32, 8)

Conv1D(64, 4)

MaxPooling1D(64, 1)

LeakyReLU(8, 216)

LeakyReLU(64, 4)

LeakyReLU(16, 72)

LeakyReLU(32, 18)

Flatten(64)

Dropout(64, 4)

Normal ECGSynthesised ECG

Stage I

Stage II
Model details

Normal / Not Normal
（Output)

Figure 1: Architecture of the ECG-ADGAN network and its training stages. G and

D represent a generator to and a discriminator respectively. In Stage I, the GAN is

trained by iteratively updating both the generator and the discriminator which is used

to distinguish between real/fake ECG sequences. In Stage II, the generator is frozen and

the discriminator is further trained to detect anomaly ECG sequences from normal ECG

signals.
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The training of the anomaly detector is composed of two stages: In Stage

I, we train the GAN by iteratively updating both the generator and the dis-

criminator to ensure the generator can synthesize more realistic ECG signals.

The loss function for training the generators and discriminators is the KL

scatter (relative entropy):

Tfunction for training the(p‖q) =
n∑

i=1

p (xi) log

(
p (xi)

q (xi)

)
(1)

where p(x) represents the distribution of the true ECG samples and q(x)

the distribution of the generated ECG samples. The loss function conver-

gence of both the generator and discriminator during the adversarial training

in Stage I is illustrated in Fig. 2. It is observed that the generator does not

learn the real data distribution at the beginning of the training since the

discriminator could easily separate the generated data from the real data.

During the 850 iterations, the generator gradually learns the real data distri-

bution pattern to ensure that the adversarial learning between the generator

and the discriminator reaches a Nash Equilibrium.

In Stage II, we freeze the generator and train the anomaly detection clas-

sifier with more iterations to ensure the detector becomes more distinctive

to identify anomaly signals. These two-stage training strategy ensures the

convergence of the GAN to align with the real ECG normal data distribu-

tion (illustrated in Fig. 2(a)) and achieves a more discriminant classifier for

anomaly detection (illustrated in Fig. 2(b)).

Compared to other GAN based ECG anomaly detection models (e.g.,

[14, 11]), our model embeds a Bi-LSTM layer that creates strong temporal

constraints on the signal synthesis; we hypothesize that this will lead to
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(a)

Stage I Stage II

(b)

Figure 2: (a) Loss of the models in Stage I. (b) The discriminator accuracy with both

Stage I and Stage II.

better overall performance.

The Bi-LSTM operations can be expressed in the following equations:

kt = f (w1xt + w2kt−1) (2)

k
′

t = f
(
w3xt + w5k

′

t+1

)
(3)

ot = g
(
w4kt + w6k

′

t

)
(4)

where xt denotes the input of current timestamp t, kt denotes the output

of forward layer at current timestamp, kt−1 denotes the output of forward

layer at previous timestamp, k′t denotes the output of backward layer at

current timestamp, k′t+1 denotes the output of backward layer at next times-

tamp, and ot is the final output by considering both the Bi-LSTM layers.
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As illustrated in Fig. 3, the Bi-LSTM layer learns sets of weights to

exploit the temporal correlations on both forward and backward directions

of temporal signals. Thus, this layer could significantly contribute to the data

distribution alignment for signals with strong temporal patterns. To justify

this, we overlay 70 beats of ECG signals containing normal and premature

ventricular contraction (PVC) rhythms in a plot by aligning them based on

R-peak. Illustrated in the Fig. 4, it is observed that normal ECG signals

have a clear temporal pattern with a small variation that could facilitate

their identification and distinguish from those with PVC.

Input(1, 100)

Conv1D(32, 100)

Ot

LSTM

LSTM

…..

….. …..

…..

Output

Forward Layer

Back Layer

Activation Layer

Input

Activation

Xt

Figure 3: Architecture of Bi-LSTM in ECG-ADGAN

3.2. Mini-batch discriminator

The ultimate goal of training a GAN is to find the Nash Equilibrium of a

zero-sum game. Simply put, a generator and a discriminator iteratively min-

imise their cost functions till convergence. However, in practice, it is hard to

reach the Nash Equilibrium because the cost functions are non-convex and
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ST-segment depression

R wave anomaly

P wave disappear

Figure 4: Heartbeat overlay drawing. We overlay 70 beats of ECG signals containing

normal and premature ventricular contraction (PVC) rhythms in a plot by aligning them

based on R-peak.

the parameter space is high-dimensional [31, 32]. Further, adversarial train-

ing of GANs penalises poorly generated samples, which makes the generator

more likely to synthesise samples that have been validated, thereby losing

data diversity and falling into a mode collapse. To avoid this here, we use

mini-batch discrimination during Stage I training. Mini-batch discrimination

was initially proposed in [31]. As expressed in Eq. (5) - (7), extra feature

representations are created by calculating the similarity between batch sam-

ples. These are concatenated with original feature representations to reach

a more reliable convergence of the discriminator.

o (xi)b =
n∑

j=1

cb (xi,xj) ∈ R (5)

o (xi) = [o (xi)1 , o (xi)2 , . . . , o (xi)B] ∈ RB (6)
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o(X) ∈ Rn×B (7)

where c denotes the L1 distance between each sample features xi, n de-

notes the feature dimension, and o denotes the sum of c, b denotes the batch

index and B is the batch size. The combination of o(x)b with original sam-

ple features improves convergence during GAN training as well as diversifies

synthesised samples.

3.3. Implementation of the model

The pseudocode of our model is presented in Algorithm 1, and the code is

available at https://github.com/gaofujie1997/ECG-ADGAN. In addition,

we visualize the synthesised samples of the generator at several key training

stages that are correspondent to significant value changes of loss functions.

Fig. 5 illustrates an example synthesized (a) at the beginning of the training,

the output of the generator is a random vector. (b) after 100 iterations, the

output reveals some of the characteristics of the ECG. (c) after 300 iterations,

the generator learns the characteristics of the ECG well, but the waveform

is still not smooth. (d) after 850 iterations, generator can output realistic

synthetic ECGs. There are a clear convergence pattern since the generator

gradually aligns well with normal ECG signals.

4. Experiment

4.1. Experimental settings

The algorithms were deployed on a tower workstation with a Core i9-

10920X processor (3.5GHz), Quadro RTX6000 graphics card (24GB of video

13
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Algorithm 1 ECG-ADGAN

Input: Normal ECG Signal

Output: Normal or Not Normal Flags

Require: GAN

1: Initialize the parameters of G and D.

2: Fix G, randomly select n real ECG samples and n synthesised samples

from G using the defined noise z, which are used to train D to distinguish

between real and fake as much as possible.

3: Update D k times followed by 1 times update of G.

4: When the change in the loss of D and G is less than 5%, stop training

G but continue training D until the loss of D no longer improves, saving

the model of D as M .

5: Using model M for anomaly detection.

6: return Normal or Not Normal

memory) running on 32GB RAM, and a deep learning environment using

Window Server 2019 + Python 3.8 + Keras 2.2. In this paper, the MIT-

BIH arrhythmia database [19], an open-source dataset collected by the Mas-

sachusetts Institute of Technology, was selected as the experimental dataset.

The MIT-BIH arrhythmia database contains 48 dual channel ECGs of 30

minutes in length, with a sampling rate of 360 Hz. The location of R-peak

was annotated by using a simple slope-sensitive QRS detector and the type

of beats was annotated by two cardiologists [19].

To preprocess the data, we used the method in [33] to find R-peak and

segment each recording into epochs containing a single cardiac cycle and the

length of each cycle was sampled to 216 dimensions. Following this, as shown
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Figure 5: ECG generated at different stages. (a) at the beginning of the training, (b) after

100 iterations, (c) after 300 iterations and (d) after 850 iterations. It shows our generator

converges to model data distribution of normal ECG sequences which can be further used

for ECG anomaly detection.

in Fig 6, we applied wavelet threshold denoising [34]. Specifically, the Eq.

(8) and (9) defined the adaptive threshold in the noise removing process for

obtaining the input vector of our model.

Noise-
containing 

ECG

Wavelet 
coefficients for 

each scale

New wavelet 
coefficients for 

each scale

Noise-free 
ECG

Decomposition to 
wavelet threshold

Threshold marshal 
selection

Wavelet inversion to 
reconstruct signal

Figure 6: Wavelet threshold denoising method. There are three steps to preprocess original

ECG sequences to noise-free sequences before feeding into our proposed model.

t = σ
√

2 log (M) (8)

ωt =

 [sgn(ω)](|ω| − t), |ω| ≥ t

0, |ω| < t
(9)

where M is the length of the high-frequency coefficients for each scale of

the wavelet, scale is 9, σ = 0.674 is a constant value, t is the threshold, and
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ω are the high-frequency wavelet coefficients.

We follow the principle defined in [35] to divide the data into a training

set and a test set for fair comparison. Particularly, any heartbeat records

with participant IDs in the test set are not included in the training dataset no

matter if they are normal or abnormal heartbeats. This resolves the potential

bias if similar patterns from same IDs have been learned at the training stage.

The division of the data sets on MIT-BIH is presented in Table 1. For the

evaluation comparison, we use the same test data partitioned in [11].

Table 1: Division of the training and test sets on MIT-BIH

Data sets Records Type Number of heartbeats

Train
101, 103, 112, 113, 115, 117,

121, 122, 123, 230
Normal heartbeats 85717

Test

100, 102, 104, 105, 106, 107,

108, 109, 111, 114, 116, 118,

119, 124, 200, 201, 202, 203,

205, 207, 208, 209, 210, 212,

213, 214, 215, 217, 219, 220,

221, 222, 223, 228, 231, 232,

233, 234

Normal and Abnormal heartbeats 2005

In Table 2, we provide the abnormality categories in MIT-BIH. The AAMI

standards are adopted in our experiments and results have been compared to

those of [11] and [14]. We treat samples in Supraventricular (S), Ventricular

(V), Fusion (F) and Unknown (Q) as anomalous samples and all normal

heartbeats (N) as normal samples to make a binary classification task. For

the method evaluation, accuracy, precision, recall, F1 and AUC are used as

metrics to compare our model with benchmark methods.
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Table 2: Composition of Train Data and Test Data

AAMI category MIT-BIH category Train Test

Normal(N) N, L, R 85717 1000

Supraventricular(S) A, a, J, S, j, e - 330

Ventricular(V) V, E - 330

Fusion(F) F - 330

Unknown(Q) /, f, Q - 15

4.2. Comparison with state-of-the-art semi-supervised learning methods

In our work, we compared the performance of our model to OC-SVM [2],

AnoGAN [16], GANomaly [36] and BeatGAN [14]. For fair comparison, we

re-implemented these benchmark methods on the same dataset. As shown in

Table 3, compared to OC-SVM method, all the synthesised based methods

achieved much better performance. Our method achieved the best perfor-

mance, with an accuracy of 95.5%, precision of 96.9%, recall of 91.8%, F1

of 94.3% and AUC of 95.9%. Overall, the model’s better performance pro-

vides evidence that the temporal constraints with Bi-LSTM and mini-batch

training are useful.

4.3. Experiments for unknown cardiac abnormality detection

We further conducted a cross-validation experiment to demonstrate our

model generalisation over supervised learning method when facing unknown

cardiac abnormalities. Specifically, as shown in Table 4, we train a model

by excluding one abnormality category each time and evaluate the model

performance by using this category in the test stage. For the balanced data
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Table 3: Performance of each method

Methods Accuracy Precision Recall F1 AUC

OC-SVM 0.804 0.765 0.805 0.785 0.794

AnoGAN 0.927 0.873 0.910 0.891 0.894

GANomaly 0.934 0.914 0.895 0.904 0.937

BeatGAN 0.948 0.953 0.907 0.929 0.943

ECG-ADGAN 0.955 0.969 0.918 0.943 0.959

test, we randomly sampled 330 normal ECG segments to conduct each ex-

periment. The CNN+LSTM supervised learning model proposed in [37] was

selected for the comparison. In Table 4, it was observed that the ECG-

ADGAN had better generalisability to detect unknown cardiac abnormali-

ties although CNN+LSTM model achieved high accuracy on detect known

cardiac abnormalities. Further, the confusion matrix of the four experiments

are illustrated in Fig. 7 to demonstrate how our model detected each un-

known cardiac abnormalities. When the four classes were treated as unknown

abnormalities respectively, the misclassification rates were much lower when

using the semi-supervised learning method. Thus, the matrix further con-

firmed that the semi-supervised learning method achieved more generalised

model for the unknown cardiac abnormality detection.

4.4. Ablation experiment

To prove the effectiveness of Bi-LSTM and mini-batch discrimination

training, we have conducted an ablation study by taking them off from our

proposed model respectively. The results in Table 5 show that, although
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Table 4: Performance of CNN+LSTM and ECG-ADGAN
CNN+LSTM ECG-ADGAN

Train Label Test with train labels Test with new abnormal label
Acc Precision Recall F1

Normal Abnormal Acc Precision Recall F1 Acc Precision Recall F1

N S,V,Q 0.970 0.973 0.967 0.970 0.753 0.973 0.676 0.798 0.939 0.967 0.917 0.941

N S,F,Q 0.976 0.979 0.973 0.976 0.924 0.979 0.883 0.928 0.965 0.967 0.964 0.965

N V,F,Q 0.976 0.982 0.970 0.976 0.697 0.982 0.626 0.764 0.903 0.967 0.858 0.909

N S,V,F 0.967 1.000 0.938 0.968 0.800 1.000 0.714 0.833 0.966 0.933 1.000 0.966

both elements have contributed to the performance improvement, Bi-LSTM

plays a relatively more important role in our proposed method compared to

the mini-batch discrimination since the temporal pattern preservation makes

the most useful constraint to model ECG sequences. With the contributions

from both, we achieved the best performance in terms of all the evaluation

metrics.

Table 5: Ablation experiment

Bi-LSTM Mini-batch Discrimination Accrucy Precision Recall F1 AUC

× × 0.929 0.887 0.895 0.891 0.897

× X 0.936 0.923 0.903 0.913 0.931

X × 0.941 0.943 0.905 0.924 0.939

X X 0.955 0.969 0.918 0.943 0.959

5. Discussions and Conclusions

In this paper, we have proposed a novel ECG anomaly detection GAN

method for the one-class classification analysis task since it is more suitable

to model the high-dimensional ECG signal data distribution. Compared to

previous GAN based ECG anomaly detection work, our method has better
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Figure 7: Confusion matrix of Table 4. (a)-(d) are CNN+LSTM: (a)F, (b)V, (c)S, (d)Q.

(e)-(f) are ECG-ADGAN: (e)F, (f)V, (g)S, (h)Q. It shows that our proposed method

achieved more generalised model when compared to a supervised CNN+LSTM model.

performance because of two distinctive designs, which include: (i) we embed

Bi-LSTM layer in our architecture so that the temporal relation is explored

in the learning process; and (ii) we use a mini-batch training strategy to

stabilise the GAN convergence. The experimental results demonstrate our

method outperforms several state-of-the-art semi-supervised learning based

ECG anomaly detection algorithms and reached 95.5% accuracy and 95.9%

AUC on the MIT-BIH arrhythmia database. Further, we conduct a cross-

validation experiment to leave one abnormality class as unknown abnormality

each time to train a supervised learning model. Based on the experimental

results, it proves that the generalisability of our model is more superior to

identify unknown abnormalities when compared to supervised learning meth-

ods.
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Although our proposed method offered an unsupervised way to detect

ECG anomalies and demonstrated an improved performance compared to

the state-of-the-art anomaly detection methods, the method cannot distin-

guish specific types of anomalies without human annotation. In future work,

we will investigate to identify these specific anomaly types with few human

annotations in a weakly-supervised manner. In addition, the training method

of ECG-ADGAN can be extended to anomaly detection on other time-series

data, such as log anomaly detection, audio anomaly detection and video

anomaly detection.
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