Identification of active sites and phases in heterogeneous catalysts and the understanding of the reaction mechanism remain highly challenging. In most catalysts, the existence of a multitude of surface species, which are dynamic in relation to reaction conditions, presents a challenge of distinguishing those that are involved in the catalytic cycle from those which are spectators. The emergence of the field of single-site catalysts potentially eliminates these issues, although it can be argued that these systems remain dynamic and that multiple speciation, each a candidate for the active site, often remains a consideration. A perspective on how X-ray spectroscopy and characterization tools in general, can be used to correlate the number of active sites and the rate of their formation, in single-site and redox catalyst systems, is presented. The importance of observing proportionality between spectra features and the reaction rate, to differentiate between active sites and spectator species is discussed. Performing characterisation under catalyticly relevant conditions on structures that are demonstrably representative of actual catalysts is essential.
History
School
Science
Department
Chemistry
Published in
Topics in Catalysis
Volume
62
Pages
1218 - 1227
Citation
KONDRAT, S.A. and VAN BOKHOVEN, J.A., 2018. A perspective on counting catalytic active sites and rates of reaction using x-ray spectroscopy. Topics in Catalysis, 62, pp.1218-1227.
This work is made available according to the conditions of the Creative Commons Attribution 4.0 International (CC BY 4.0) licence. Full details of this licence are available at: http://creativecommons.org/licenses/ by/4.0/
Acceptance date
2018-10-01
Publication date
2018-10-13
Notes
This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.