A video processing and machine learning based method for evaluating safety-critical operator engagement in a motorway control room
In safety-critical automatic systems, safety can be compromised if operators lack engagement. Effective detection of undesirable engagement states can inform the design of interventions for enhancing engagement. However, the existing engagement measurement methods suffer from several limitations which damage their effectiveness in the work environment. A novel engagement evaluation methodology, which adopts Artificial Intelligence (AI) technologies, has been proposed. It was developed using motorway control room operators as subjects. Openpose and Open Source Computer Vision Library (OpenCV) were used to estimate the body postures of operators, then a Support Vector Machine (SVM) was utilised to build the engagement evaluation model based on discrete states of operator engagement. The average accuracy of the evaluation results reached 0.89 and the weighted average precision, recall, and F1-score were all above 0.84. This study emphasises the importance of specific data labelling when measuring typical engagement states, forming the basis for potential control room improvements.
Practitioner summary: This study demonstrates an automatic, real-time, objective, and relatively unobtrusive method for measuring dynamic operator engagement states. Computer vision technologies were used to estimate body posture, then machine learning (ML) was utilised to build the engagement evaluation model. The overall evaluation shows the effectiveness of this framework.
Abbreviations: AI: Artificial Intelligence; OpenCV: Open Source Computer Vision Library; SVM: Support Vector Machine; UWES: Utrecht Work Engagement Scale; ISA Engagement Scale: Intellectual, Social, Affective Engagement Scale; DSSQ: Dundee Stress State Questionnaire; SSSQ: Short Stress State Questionnaire; EEG: electroencephalography; ECG: Electrocardiography; VMOE: Video-based Measurement for Operator Engagement; CMU: Carnegie Mellon University; CNN: Convolutional Neural Network; 2D: two dimensional; ML: Machine learning.
History
School
- Design and Creative Arts
Department
- Design
Published in
ErgonomicsVolume
67Issue
3Pages
356-376Publisher
Informa UKVersion
- VoR (Version of Record)
Rights holder
© The Author(s)Publisher statement
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way. The terms on which this article has been published allow the posting of the Accepted Manuscript in a repository by the author(s) or with their consent.Acceptance date
2023-06-04Publication date
2023-06-27Copyright date
2023ISSN
0014-0139eISSN
1366-5847Publisher version
Language
- en