e184103.pdf (228.84 kB)
Download file

Ab initio study of point defects in magnesium oxide

Download (228.84 kB)
journal contribution
posted on 04.02.2013, 09:41 by Christopher A. Gilbert, Steven KennySteven Kenny, Roger SmithRoger Smith, E. Sanville
Energetics of a variety of point defects in MgO have been considered from an ab initio perspective using density functional theory. The considered defects are isolated Schottky and Frenkel defects and interstitial pairs, along with a number of Schottky defects and di-interstitials. Comparisons were made between the density functional theory results and results obtained from empirical potential simulations and these generally showed good agreement. Both methodologies predicted the first nearest neighbor Schottky defects to be the most energetically favorable of the considered Schottky defects and that the first, second, and fifth nearest neighbor di-interstitials were of similar energy and were favored over the other di-interstitial configurations. Relaxed structures of the defects were analyzed, which showed that empirical potential simulations were accurately predicting the displacements of atoms surrounding di-interstitials, but were overestimating O atom displacement for Schottky defects. Transition barriers were computed for the defects using the nudged elastic band method. Vacancies and Schottky defects were found to have relatively high energy barriers, the majority of which were over 2 eV, in agreement with conclusions reached using empirical potentials. The lowest barriers for di-interstitial transitions were found to be for migration into a first nearest neighbor configuration. Charges were calculated using a Bader analysis and this found negligible charge transfer during the defect transitions and only small changes in the charges on atoms surrounding defects, indicating why fixed charge models work as well as they do.



  • Science


  • Mathematical Sciences


GILBERT, C.A. ... et al., 2007. Ab initio study of point defects in magnesium oxide. Physical Review B (Condensed Matter and Materials Physics), 76 (18), 10pp.


© The American Physical Society


VoR (Version of Record)

Publication date



This article was published in the journal, Physical Review B (Condensed Matter and Materials Physics) [© The American Physical Society]. The definitive version is available at: http://dx.doi.org/10.1103/PhysRevB.76.184103





Usage metrics