Loughborough University
Browse

Aberrant myonuclear domains and impaired myofiber contractility despite marked hypertrophy in MYMK-related, Carey-Fineman-Ziter Syndrome

Download (3.78 MB)
journal contribution
posted on 2025-03-17, 08:59 authored by Hannah DugdaleHannah Dugdale, Yotam Levy, Heinz Jungbluth, Anders Oldfors, Julien Ochala
Carey Fineman Ziter Syndrome (CFZS) is a rare autosomal recessive disease caused by mutations in the MYMK locus which encodes the protein, myomaker. Myomaker is essential for fusion and concurrent myonuclei donation of muscle progenitors during growth and development. Strikingly, in humans, MYMK mutations appear to prompt myofiber hypertrophy but paradoxically, induce generalised muscle weakness. As the underlying cellular mechanisms remain unexplored, the present study aimed to gain insights by combining myofiber deep-phenotyping and proteomic profiling. Hence, we isolated individual muscle fibers from CFZS patients and performed mechanical, 3D morphological and proteomic analyses. Myofibers from CFZS patients were ~ 4x larger than controls and possessed ~ 2x more myonuclei than those from healthy subjects, leading to disproportionally larger myonuclear domain volumes. These greater myonuclear domain sizes were accompanied by smaller intrinsic cellular force generating-capacities in myofibers from CFZS patients than in control muscle cells. Our complementary proteomic analyses indicated remodelling in 233 proteins particularly those associated with cellular respiration. Overall, our findings suggest that myomaker is somewhat functional in CFZS patients, but the associated nuclear accretion may ultimately lead to non-functional hypertrophy and altered energy-related mechanisms in CFZS patients. All of these are likely contributors of the muscle weakness experienced by CFZS patients.

Funding

Open access funding provided by Copenhagen University

Funded by grants from the Novo Nordisk Foundation (NNF-0070539)

History

School

  • Sport, Exercise and Health Sciences

Published in

Acta Neuropathologica Communications

Volume

12

Issue

1

Publisher

BMC (BioMed Central)

Version

  • VoR (Version of Record)

Rights holder

© The Authors

Publisher statement

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Acceptance date

2024-04-10

Publication date

2024-05-24

Copyright date

2024

ISSN

2051-5960

eISSN

2051-5960

Language

  • en

Depositor

Dr Hannah Dugdale. Deposit date: 11 September 2024

Article number

80

Usage metrics

    Loughborough Publications

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC