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ABSTRACT 

The ability to accurately estimate the location and geometry of holes is often required in the 

field of quality control and automated assembly. Projected fringe profilometry is a potentially 

attractive technique on account of being non-contacting, of lower cost, and orders of 

magnitude faster than the traditional coordinate measuring machine (CMM). However, we 

demonstrate in this paper that fringe projection is susceptible to significant (hundreds of µm) 

measurement artefacts in the neighbourhood of hole edges, which give rise to errors of a 

similar magnitude in the estimated hole geometry. A mechanism for the phenomenon is 

identified based on the finite size of the imaging system’s point spread function and the 

resulting bias produced near to sample discontinuities in geometry and reflectivity. A 

mathematical model is proposed, from which a post-processing compensation algorithm is 

developed to suppress such errors around the holes. The algorithm includes a robust and 

accurate sub-pixel edge detection method based on a Fourier descriptor of the hole contour. 



The proposed algorithm was found to reduce significantly the measurement artefacts near the 

hole edges. As a result, the errors in estimated hole radius were reduced by up to one order of 

magnitude, to a few tens of µm for hole radii in the range 2-15 mm, compared to those from 

the uncompensated measurements. 
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descriptor 
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1. Introduction 

Accurate estimation of size and location of holes [1,2] on different kinds of surfaces is often 

required in industrial quality control and automated assembly, since a small deviation of 

diameter and position estimation may lead to a mismatch of assembly components. This 

process is usually performed by a mechanical coordinate measuring machine (CMM). 

Mechanical CMMs measure object shapes by physically probing points at different locations 

on objects [3]. Although it is capable of producing the highly accurate measurements that 

industry demands, its major shortcoming includes a relatively long measurement time and the 

need to contact the test surface. 

Projected fringe profilometry [4-6] has the advantages of being non-contact, fast and cost-

efficient. 3D scanners based on fringe projection can measure millions of points on the 

surfaces of objects with dimensions ranging from a few cm to a few m, in just a few seconds, 

with an accuracy of typically a few tens of µm. Fringe projection therefore has the potential 

to be an effective alternative approach to estimate the sizes and locations of holes. However, 

it remains to be proven how accurate and robust such estimations are when compared to those 

obtained from the industry standard mechanical CMMs. The presence of discontinuities in 

reflectivity and specimen geometry has previously been linked to systematic errors in 

measurements from fringe projection systems [7-9]. The effect on the accuracy of hole 

characterisation has not, however, been reported previously, apart from a recent conference 

paper by the same authors [9] on which the current paper is based.  

In this paper, results from an experiment to compare fringe projection measurements with 

those from a mechanical CMM are presented. These demonstrate that very significant errors 

(around 0.3 mm radii mean error for 8 mm radius holes) can in fact arise in such an 

application of projected fringe profilometry. The experiments were done on an in-house 



fabricated test panel with a range of holes of varying sizes, following a procedure described 

in section 2. In order to estimate the radii and the positions of the holes automatically, a 

standard image processing technique was employed to process the coordinate data. In section 

3, we provide a possible explanation for the underlying cause of the errors and propose a 

correction algorithm. A fundamental requirement of this correction algorithm is a robust sub-

pixel edge detection method, so in section 4, a robust contour estimation method based on a 

Fourier descriptor approach is proposed. In section 5 we present results from applying the 

algorithms outlined in sections 3 and 4 to the test data and demonstrate dramatic (up to 11×) 

reduction in errors in the estimated radius values.  

2. Experimental  

An aluminium test panel of dimensions 300×300×10 mm3 was manufactured with a set of 

through holes, with diameters ranging from 30 mm down to 1 mm, as shown in Figure 1. 

Apart from the holes with the two smallest diameters (1 mm and 2 mm), which were 

measured by means of an optical CMM (SmartScope FLASH 200), the radius and the centre 

position of each hole on the panel was estimated using a mechanical CMM (LK Ultra Metris). 

As the hole radius increased from 2 mm to 15 mm, the number of CMM probe touch points 

around the hole edges was increased from 46 points to 909 points. The CMM tip had a 

diameter of 0.5 mm and the probe touched points 1 mm below the surface (inside the hole) 

during the measurement. The CMM recorded the X, Y and Z position of each touch point 

around the circumference, and estimated the hole radius and centre position after fitting a 

circle to the measured points. The measurement process, facilitated by the prior knowledge of 

the hole positions, was mainly manual and the whole process took more than 2 hours to 

complete.  



A Phase Vision Quartz 1200 fringe projection 3D scanner was then employed to obtain a 

dataset of X, Y and Z coordinates covering the surface of the test panel. Following calibration, 

the scanner projected sinusoidal fringe patterns on to the test object with a reverse 

exponential fringe sequence, and a reverse exponential least-squares temporal phase 

unwrapping (TPU) algorithm [10,11] was used to extract the unwrapped phase from the 

recorded fringe patterns. The measurement system has a working distance of 1.8-2.8 m, and 

produces point clouds of 2048×2048 pixels with a 100-µm measurement accuracy.  

Prior to measurement, a thin layer of white developer powder was applied to the upper face 

of the plate to produce a more diffusely scattering surface with reduced specular ‘hot spots’. 

Care was taken to avoid the powder from entering into the holes themselves. The holes were 

detected automatically by applying image processing techniques to the ‘texture image’, i.e. 

the intensity distribution produced by uniform lighting of the scene, which is also recorded as 

part of the scan. The standard image processing procedures that were used included the 

following four steps, which are also illustrated in Figure 2:  

1. Detect initial hole edges with a Canny operator [12], 

2. Label each disconnected edge, 

3. Fit ellipses to the clusters of connected edge points to detect whether it is a hole, 

4. Determine the centre and identify the pixels on the circumference of each detected circular 

hole. 

After these image processing steps on the texture image, the radius of a given hole was 

estimated by least squares fitting of the equation for an ellipse to the X, Y and Z coordinate 

data on the pixels identified as lying on the hole’s perimeter. Figure 3 shows the estimated 

results thus obtained over a small portion of the test object, in this case for the set of holes 



with a nominal 8 mm radius. The estimated radius is always significantly higher than the true 

radius (where the true radius is taken to be that determined by the CMM measurements), with 

a mean error of approximately 0.3 mm. This is significantly higher than the intrinsic 

measurement accuracy of the scanner (ca. 100 µm) and is also 12 times larger than the 

measured mean hole circularity of approximately 0.025 mm. 

3. Discontinuity-induced measurement artefact (DMA) and the compensation model 

A clue to the underlying cause of the overestimated radius can be found in the distribution of 

measured height in the vicinity of a hole. Figure 4(a) shows this distribution for a hole of 

radius 4 mm, after subtraction of a best-fit plane. A systematic measurement error is visible 

which has a peak value of over 0.5 mm in both the positive and negative directions, close to 

the edge of the hole, and which is many times the intrinsic random error of the scanner.  One 

side of the hole edge appears to be lowered while the other side is raised giving rise to an 

apparent approximately elliptical shape to the hole edge. The minor axis of the ellipse may be 

close to the true radius R0, as illustrated in Figure 4(b), but the major axis will be larger. 

Therefore, in the presence of this systematic error, the estimated radius R produced by fitting 

a circle to the edge coordinates will be consistently larger than R0. 

The cause of the systematic error shown in Fig. 4(a) is believed to be the imperfect averaging 

produced when significant intensity variations occur over a length scale comparable to the 

diameter of the camera’s point spread function (PSF). This effect has recently been analysed 

for the case of discontinuities in reflectivity on otherwise continuous surfaces in [8]. The case 

of a hole is in general more complex because in addition to the discontinuity in reflectivity 

there are geometrical discontinuities (in both depth and in slope). However, a ‘black hole’, i.e. 

one for which no light is back-scattered from within the hole, will be indistinguishable from a 

perfectly absorbing black circle on a continuous uniformly scattering surface. It therefore 



seems plausible that the method developed in [8] is also applicable to the correction of 

measurement errors around holes, at least for cases where the scattered light intensity from 

within the hole is much less than from the material immediately surrounding it. 

A simple 1-D example to illustrate the effect is shown schematically in Figure 5. Figure 5(a) 

shows a cross section through an image of a uniformly-illuminated plate with a hole. The 

vertical axis is normalised intensity, denoted here I(x), and the horizontal axis represents 

position, x, along the plate. In this example, the hole occupies the region –D/2 < x < D/2, 

where D = 0.4. The plate is then illuminated with a sequence of fringe patterns, one of which 

is shown in Fig. 5(b). If for example the reversed exponential sequence [11] is used to 

provide an independent unwrapped phase value at each camera pixel, a sequence with 8,7,6,4 

fringes across the field could be projected, each of which would have four phase shifts. 

Figure 5(b) then represents the first of these 16 patterns, consisting of eight fringes and zero 

phase shift.  

The unwrapped phase profile computed from these patterns, ωx(x), is shown in Fig. 5(c). The 

continuous line represents ωx(x) normalised onto the range –π to +π; the dashed-dotted line is 

the phase that would have been measured if the plate had been continuous, but which is not 

calculable due to the absence of measurable intensity from the hole region. The subscript ‘x’ 

in ωx refers to the phase resulting from fringes oriented normal to the x axis. In the full 2-D 

case considered later, ωy will be used to refer to the unwrapped phase map from fringes 

projected normal to the y axis. 

We have assumed thus far that the camera recording the images has a PSF of negligible 

diameter compared to the field of view. Consider now the situation where this is not the case, 

for example due to significant defocus of the camera. Point P in Fig. 5(c) is a point on the 

sample well away from the hole, with true unwrapped phase ωx
(P). The horizontal bar 



represents the spatial extent of the PSF. The signal at P now contains contributions from the 

range of ωx values falling within the range of the bar, however since the sample is uniformly 

reflective over the PSF region, as seen in Fig. 5(a), the contribution from the regions to the 

left and right of P, where ωx is respectively greater than and less than ωx
(P), can be expected to 

largely cancel out. Point Q also receives signal from the region of the sample falling within 

the range of the bar centred on Q. However, as Q lies on the left hand edge of the hole, signal 

only comes from scattering points lying to the left of Q. The contributions to the detected 

signal all have ω𝑥𝑥 ≤ ω𝑥𝑥
(𝑄𝑄) and the measured phase is thus biased in the downward direction. 

The opposite happens at point R where there is a positive bias in the measured phase.  

A model for the measured phase from this finite sized PSF case is shown in Fig. 5(d). Here 

we have assumed that the measured phase is a convolution of the intensity-weighted true 

phase, 𝑔𝑔(𝑥𝑥), with the camera’s PSF ℎ(𝑥𝑥). 𝑔𝑔 is thus the product of the true phase (Fig. 5(c)), 

and the intensity signal (Fig. 5(a)), and ℎ was chosen to be a rectangular (‘top hat’) function 

of width 0.2. 

The measured profile across the hole which is obtained by removal of the linear ramp and 

appropriate scaling, then has positive and negative artefacts next to the hole which are 

reminiscent of those shown in Fig. 4(a). The example in Fig. 5(e) is the profile that would be 

obtained for the case of a 45° projection angle, and the artefacts are seen to be a significant 

fraction of the field of view.  

It should be noted that this effect is not limited to any particular scanner or phase 

shifting/unwrapping algorithm but is an optical phenomenon related to the finite size of the 

imaging system’s point spread function. Factors influencing the PSF diameter include lens 

aberrations, the finite pixel size of the image sensor, and ultimately diffraction. In practice, 

defocus is likely to be the biggest contributor to PSF size for scattering regions within the 



measurement volume that lie a significant distance from the plane of best focus. The effect is 

thus likely to be present in any triangulation based optical sensor, including light stripe 

sensors.   

 

3.1 The compensation model 

It is interesting to test the validity of the error source proposed above, and ultimately to 

derive a compensation algorithm to remove the errors. In this section we consider how this 

might be attempted by means of a simple mathematical model.  

Figure 6 is a schematic of the top view of a plate containing a hole. The 1-D example in Fig. 

5 can be regarded as a cross-section through the centre of this hole, along the line y = 0, 

where the origin for the (x, y) coordinate system lies at the centre of the hole. If the PSF has 

radius RP, then only those image plane points within a distance RP of the edge of the hole are 

affected by the presence of the hole.  This region is denoted the ‘PSF zone’ in Fig. 6.  

As in [8] it will be assumed that the phase measured by the system at an arbitrary point in the 

PSF zone with coordinates (𝑥𝑥𝑐𝑐,𝑦𝑦𝑐𝑐) may be modelled as a weighted average of the true phase 

values lying within the PSF footprint, shown as the grey shaded circular region in Fig. 6. The 

weighting function is chosen to be the product of I and the PSF, as this is proportional to the 

signal level (number of photons, and hence number of photoelectrons in the image sensor) 

that will be detected at point (𝑥𝑥𝑐𝑐 ,𝑦𝑦𝑐𝑐) from point (𝑥𝑥, 𝑦𝑦) for each of the recorded fringe patterns. 

The output of the model for the phase ω�𝑗𝑗 (j = x, y) recovered at point 𝑥𝑥 = 𝑥𝑥𝑐𝑐 ,𝑦𝑦 = 𝑦𝑦𝑐𝑐, may 

thus be written as the convolution integral 

ω�𝑗𝑗(𝑥𝑥𝑐𝑐 ,𝑦𝑦𝑐𝑐) =
∬ ω𝑗𝑗(𝑥𝑥,𝑦𝑦) ∙ 𝐼𝐼(𝑥𝑥,𝑦𝑦) ∙ ℎ(𝑥𝑥 − 𝑥𝑥𝑐𝑐 ,𝑦𝑦 − 𝑦𝑦𝑐𝑐)d𝑥𝑥d𝑦𝑦∞
−∞

∬ 𝐼𝐼(𝑥𝑥, 𝑦𝑦) ∙ ℎ(𝑥𝑥 − 𝑥𝑥𝑐𝑐 ,𝑦𝑦 − 𝑦𝑦𝑐𝑐)d𝑥𝑥d𝑦𝑦∞
−∞

 
(1) 



 

where ω𝑗𝑗 and 𝐼𝐼 are respectively the unwrapped phase and texture images that would be 

measured by an idealised camera with no image blur. h is the PSF, and the denominator 

represents a normalisation factor. For many optical systems, the PSF may be modelled as a 

Gaussian [13]: 

ℎ(𝑥𝑥,𝑦𝑦) =  𝑎𝑎 e−
𝑥𝑥2

2𝑐𝑐2e−
𝑦𝑦2

2c2       (2) 

where the parameter a is another normalisation factor, and c controls the width which is 

assumed to be identical along both the 𝑥𝑥 and 𝑦𝑦 axes. If we define the radius RP as being the 

half width at one tenth of maximum (HWTM), then 𝑅𝑅𝑃𝑃 = √2ln10𝑐𝑐 ≈ 2.146𝑐𝑐 .  

In order to test the validity of this model, and to develop an error compensation method, 

estimators ω�𝑗𝑗 and 𝐼𝐼 are required for the ω𝑗𝑗 and 𝐼𝐼 functions inside the integral of equation (1). 

In the current paper this is done by least squares fitting polynomial surfaces to the measured 

phase and texture images in the region immediately outside the PSF zone, i.e. the closest 

region where the data are unaffected by the hole edge. This region is denoted the ‘Least 

Squares Fitting’ (LSF) zone in Fig. 6. The best fit polynomial coefficients from the LSF zone 

are then use to estimate ω𝑗𝑗 and 𝐼𝐼 in the PSF zone [8].  

In general, PSF zones lie on both sides of a discontinuity. Figure 6 only shows one side of the 

PSF zone, however, because the other side is inside the hole and will not contain any valid 

data. The measured phase data within the hole is therefore simply masked out. The 

unwrapped phase measured by the shape measurement system will be denoted ω�𝑗𝑗. Within the 

PSF zone, ω�𝑗𝑗 is affected by DMA error, so the unwrapped phase at all pixels within the PSF 

zone needs to be modified.  

https://en.wikipedia.org/wiki/Full_width_at_half_maximum


As with the PSF zones, LSF zones lie on either side of the PSF zone, but only the solid 

material side is considered in the case of a hole. The width of the LSF zone is also chosen to 

be RP so that it contains sufficient information for reliable fitting whilst also keeping the 

information local enough. The data in the LSF zone is used to compensate for the phase 

errors in the pixels within the PSF zone using the model introduced below. This is based on a 

recently-proposed model to compensate for the DMA errors in the neighbourhood of 

discontinuities in reflectivity [8].   

Once the extrapolated unwrapped phase ω�j  is calculated from the LSF zones and the 

modelled phase ω�𝑗𝑗(𝑥𝑥𝑐𝑐,𝑦𝑦𝑐𝑐) is obtained by integration using equation (1), the error εω�𝑗𝑗  that 

will be present in the measured ω�𝑗𝑗 at pixel (𝑥𝑥𝑐𝑐 ,𝑦𝑦𝑐𝑐), due to the neighbouring hole, is estimated 

as follows: 

εω�𝑗𝑗 = ω�𝑗𝑗 − ω�𝑗𝑗                        (3) 

The measured ω�𝑗𝑗 value is corrected as 

ω�𝑗𝑗
′ =  ω�𝑗𝑗 − εω�𝑗𝑗 .                      (4) 

A corrected position vector for the scattering point is then computed from the (ω�𝑥𝑥
′,ω�𝑦𝑦

′) 

coordinates, using the model for the scanner that provided the original position vector. 

3.2 DMA error compensation algorithm for holes 

The proposed algorithm to compensate for the DMA error on and around a hole relies on 

detection of discontinuous transitions in intensity from the texture image, followed by 

estimation of the resultant artefact from phase and intensity values in the LSF zones, rather 

than by attempting to identify the artefacts directly from the measured point cloud. The steps 

are summarized below.  



a. Calculate an initial estimate of the radius and the centre coordinates for each hole in 

image plane coordinates (i.e., with units of pixels) from the texture image, using the 

procedure described in section 2. For each hole, choose a sub-image window 

containing only the hole and sufficient surrounding material (the need for this is 

explained later) according to the initial radius and the centre pixel estimates of the 

hole. In this study, to ensure consistency across all the datasets, the sub-image 

window was chosen to be a square with sides 3 times the diameter of the hole centred 

on the hole centre. It should be pointed out, however, that much smaller sub-image 

window dimensions also work well in practice. 

b. For each sub-image (i.e., for each hole), detect the hole edge using an edge detection 

method with sub-pixel precision. This method should provide the hole edge as pixel 

points and the hole centre to sub-pixel accuracy, in addition to the local tangential 

direction at each sub-pixel edge point.  

c. For each sub-image, dilate the Canny edge image in order to obtain the mask of the 

PSF region. The dilation width should be consistent with the RP value of the PSF of 

the camera (see section 3.1). For the results presented here, RP was obtained by 

measuring the edge response function of the camera, and subsequently fitting a 

Gaussian curve to the first order difference of the intensity image [13].    

d. For each sub-image, model the DMA error at pixels within the PSF zone as follows. 

For each pixel within the PSF zone: 

(1) Check whether the chosen pixel is inside or outside the hole edge. The check is 

conducted by comparing d1 (the distance between the hole centre and the pixel 

location) and d2 (the distance between the hole centre and the sub-pixel edge point 

closest to the chosen pixel). If d1 < d2, the chosen pixel is inside the edge and the 

phase is masked out as an invalid data point.  



(2) If the chosen pixel is outside the edge (d1 > d2), select its nearest sub-pixel edge 

point. This is illustrated in Fig. 7(a), where the nearest sub-pixel edge point is 

point 2. 

(3) Create a mask to choose the data in the LSF zone (Zone 1 in Fig. 6) from which 

ω�x, ω�y and 𝐼𝐼(𝑥𝑥,𝑦𝑦) will be calculated by extrapolation within the PSF zone. Zone 

1 is defined by the constraints PePe RrrRr 2)()( +φ<<+φ and 

α+φ<φ<α−φ cc , where )(φer  is the radius function of the sub-pixel edge 

points. ),( φr and ),( ccr φ represent the polar coordinates of an arbitrary pixel and 

of point (𝑥𝑥𝑐𝑐 ,𝑦𝑦𝑐𝑐), respectively, with respect to the hole centre. α  is an angular 

parameter to define the boundaries of Zone 1. In this study, the outside arc length 

of Zone 1 was set to be 2RP, hence ]2)(/[2)( PcePc RrR +φ=φα .  

(4) Rotate and translate the image plane, and the mask plane from the previous step, 

to a coordinate system (𝑥𝑥′,𝑦𝑦′) with its origin at the sub-pixel edge point closest to 

the chosen pixel, and its 𝑥𝑥′-axis normal to the tangent at the sub-pixel edge point 

and pointing outwards from the hole as shown in Fig. 7(b).  

(5) Calculate the modelled omega ω�𝑥𝑥  at the current pixel (𝑥𝑥𝑐𝑐 ,𝑦𝑦𝑐𝑐)  using the 

integration model in Section 3.1, and hence obtain corrected unwrapped phase 

values ω�𝑥𝑥
′ and ω�𝑦𝑦

′ using equations (3) and (4). 

e. Convert the corrected phase values to corrected coordinates (X', Y', Z') at all pixels 

within the PSF zone using the original scanner calibration model. 

To estimate the radius and the centre location, a 3D circle fitting is employed on the 

compensated (X', Y', Z') data at the sub-pixel edge points. 

 



4.  Fourier descriptor contour estimation method 

In order for the above DMA error compensation method to work effectively, it is essential to 

employ a robust sub-pixel edge detection algorithm on the texture sub-images. One 

previously-published method [14] was used initially that worked with some success for larger 

holes, but which had clear defects when applied to smaller holes (2 mm or smaller radius). 

An example is shown in Figure 8 (green dots) for three different hole radii: although the 

detected edge location appears reasonable to the eye for the 4 mm hole (Fig. 8(a)), at 2 mm 

radius (b) the shape of the hole edge appears to be no longer circular, and for both this and 

the 1 mm sub-image (Fig. 8(c)) the detected edge appears qualitatively to lie within the true 

edge, which would lead to underestimation of the hole size. For this reason an alternative 

‘Fourier Descriptor’ approach has been investigated based on expansion of the hole radius re 

as a Fourier series in φ. The theoretical background to this approach, and results of 

simulations to validate the method, are described in the next two sub-sections.  

4.1 Mathematical model of the Fourier Descriptor method 

The method described here models the hole edge in a texture image ),( yxI  as a closed 

contour of arbitrary shape, with assumed uniform intensity magnitudes of I1 and I2 inside and 

outside the contour, respectively (see Fig. 9). The contour can be specified as a Fourier series 

as follows: 

                                    [ ]∑ φ+φ+=φ
=

fN

k
kke kbkaar

1
0 )sin()cos()(                            (5) 

where er is the radius as a function of the angle φ , 0a is the zero-order Fourier coefficient, ka  

and kb are the higher order Fourier coefficients, and fN  is the highest frequency term in the 

expansion. In physical terms, 0a  is the average radius of the hole, and )2/,2/( 11 ba  is the 



position vector of the hole centre with respect to the chosen origin. The Fourier coefficients 

with k > 1 account for any deviations from circularity, with 22
kk ba +  measuring the 

amplitude of the deviation component having k lobes. Nf should therefore be chosen to be at 

least as high as the maximum expected number of lobes around the hole. The case of the 

three-lobed circle considered in [3], for example, requires 3≥fN . 

The contour can be estimated by minimising the objective function 

                                  [ ] [ ]∫ −+∫ −=
21

d),(d),( 2
2

2
1

RR
AIyxIAIyxIF                               (6) 

where R1 is the region inside the contour and R2 is the region outside the contour, both with 

respect to the contour )(φer , and dA represents an element of area. The intensities 1I  and 2I  

can be calculated directly, whereas calculation of the coefficients 𝑎𝑎0, …𝑎𝑎𝑁𝑁𝑓𝑓 and 𝑏𝑏1, … 𝑏𝑏𝑁𝑁𝑓𝑓 is a 

nonlinear problem and requires an iterative technique, implemented here using the Gauss-

Newton method. Appendix 1 gives the details of how 1I , 2I  and the coefficients 𝑎𝑎0, …𝑎𝑎𝑁𝑁𝑓𝑓 

and 𝑏𝑏1, … 𝑏𝑏𝑁𝑁𝑓𝑓  are calculated. This edge detection method is referred to as the Fourier 

descriptor (FD) method in the following section of this paper.  

In addition to providing the sub-pixel edge points, the FD method can be used to calculate the 

normal (or tangential) direction of each sub-pixel point as required by the DMA error 

compensation method described in section 3.  The lowest order approximation consists of a 

circle of radius 𝑎𝑎0, the normal vector to which is nc = (cosφ, sinφ)T, where T denotes the 

transpose operator.  The higher order terms cause an angular deviation )(φβ between the full 

expression for the edge contour given by equation (1) and that for the circle, where β  can be 

written 



                                    [ ]∑ φ+φ−=
φ
φ

=φβ
=

fN

k
kk

e

e

e
kkbkka

r
r

r 1
)cos()sin(1

d
)(d1)(                        (7) 

The normal to the edge, 𝐧𝐧𝑒𝑒, is therefore 𝐧𝐧𝑒𝑒 = 𝐌𝐌𝐧𝐧𝑐𝑐, where 𝐌𝐌 is the rotation matrix 

                                   𝐌𝐌 = �
cos (β ) −sin (β )

sin (β ) cos (β )
�          (8) 

4.2 Validation on simulated and experimental data 

In this sub-section, the robustness of the FD method was verified with both simulated and 

experimental data. The simulated data were prepared with dark circles of 20, 10 and 5 pixels 

radii, which have a similar footprint on the image plane to the 8 mm, 4 mm and 2 mm radius 

holes, respectively, in the experimental test object. The circles were then smoothed with a 

square convolution kernel of side Nk = 5 pixels in order to simulate the optical blur similar to 

that observed in the fringe projection camera. Gaussian random noise was subsequently 

added to the smoothed simulated texture images, with a standard deviation equal to Iw/S, 

where Iw is the mean intensity of the white (lighter) regions of the image and S is the signal to 

noise ratio (SNR). In the simulations, the SNR level was kept at 100; I1 and I2 took the values 

0 and 64, respectively. The errors in the estimated centres and radii using the FD method 

were calculated from 100 independent simulations. 

The results obtained are shown in Table 1 in the format rrδ σ±  for radii and 

( ),x yx yδ σ δ σ± ±  for centres, where rδ , xδ and yδ are the mean shifts in the computed 

radii and centre coordinates, and rσ , xσ and yσ are the corresponding standard deviations. All 

the values are expressed in units of one thousandth of a pixel. The larger circles have smaller 

errors than those of the smaller circles, and the FD method is seen to be capable of estimating 

the centre accurate to one hundredth of a pixel in the presence of an SNR of 100. 



The results obtained on experimental data from the test object using the FD method were 

compared with those obtained using the sub-pixel detection method [14]. Significant 

differences in the edge location were apparent. Figure 8 is an example where the FD results 

(red lines) differ in radius by up to a pixel from the sub-pixel detection method (green dots) 

[14]. For larger holes which have more than 20 pixels along their diameter, both methods 

provide similar results. For smaller holes (less than 20 pixels along the diameter), the sub-

pixel method based on partial area effect [14] provides an estimate of the edge that is 

distorted into the shape of a rectangle with rounded corners, whereas the FD method provides 

an undistorted circular result.  

 

5. DMA error compensated experimental results 

The algorithm described in Sec. 3.2 was employed to compensate for the DMA error on and 

around the holes detected from the image processing step. The value of RP, estimated using 

the procedure described in [13], was 5.0 pixels. Figure 10 shows an example Z distribution 

around a 4 mm radius hole before and after the DMA error compensation. The unexpected 

distortion around the edge is well suppressed, thus enabling more accurate radius estimation. 

The radius and the centre of each hole were calculated as before by fitting a 3D circle to the X, 

Y, and Z data on the hole edge points returned by the FD method. As the edge points are 

localised with sub-pixel resolution, the coordinate data along the edges were also obtained to 

sub-pixel resolution from the X, Y and Z arrays by interpolation.  

The radii and centre estimates for all the holes in the plate were then compared with the 

corresponding ‘ground truth’ measurements obtained by the CMM. The differences between 

the optical and CMM measurements of radius were grouped according to nominal hole radius; 

within each group the mean and root mean square (RMS) of the differences were calculated. 



The RMS distances between the optical and CMM estimates of circle centres were also 

calculated. As the hole centres estimated by the two measurement systems are in different 

coordinate systems, they were aligned first using a singular value decomposition (SVD) 

method [15] before the comparison. 

Table 2 provides the mean and RMS error in the estimated radius for the five different hole 

sizes, using the original uncompensated coordinate data. The RMS error in distance between 

the estimated centres of the holes and the true centres is also shown. Table 3 shows the 

corresponding results with the DMA error compensation method as outlined above.  

The results given in Tables 2 and 3 are compared graphically in Fig. 11. It is clear that the use 

of compensated coordinate data results in significant improvements in the estimated radius, 

compared to the original uncompensated data. For the uncompensated results on the larger 

holes, RMS values are similar to the mean error, indicating that the RMS errors are 

dominated by the systematic rather than random errors. Both are in the 200-300 µm level for 

15, 8 and 4 mm radius holes. After compensation, the mean error is reduced to 25 µm or less, 

i.e. over an order of magnitude reduction. The RMS error is reduced to 50 µm or less, i.e. a 

factor of 5 or so improvement. The accuracy of the estimation of hole centre location, on the 

other hand, improves only a little after DMA error compensation, with the largest 

improvement for the largest holes (70 µm instead of 100 µm) and in fact is marginally worse 

after correction for the smallest holes (radius 1 mm). The reason for this can be seen from 

Figure 4(b), where the anti-symmetrical nature of the height measurement error causes - in 

this idealised case - no shift in the centre location. 

 
 
 
 
 
 



6. Discussion 

As seen in the previous section, the proposed DMA error compensation method combined 

with the Fourier descriptor based closed contour detection method can successfully bring 

down the error in estimated radius by up to 4-11 times for holes of radius larger than 2 mm. 

For the 1 mm radius holes, the improvement in estimated radius was however significantly 

worse. In this section a possible explanation for this observation is proposed. 

The number of pixels along the diameter of a 1 mm radius hole is less than 10 in the captured 

images. This means that the effective radius of the PSF, at 5 pixels, is comparable to the 

radius of the hole. The model proposed in section 3.1, on the other hand, assumes a straight 

edge to the hole over the length scale of the PSF, and hence implicitly assumes the PSF 

radius to be small compared to the hole radius. This can be seen in Fig. 12, where for 

simplicity the point of interest (xc, yc) lies on the x axis, i.e. yc = 0. The camera PSF is seen to 

include the two cross-hatched regions that in the model lie within the hole, and are therefore 

ignored, but in reality contribute scattered light to the detected signal. As these two regions 

lie to the left of the centre point of the integration circle, the ωx values of the scattered light 

from them balances those from the light scattered by corresponding regions to the right of the 

integration circle centre point. The original uncompensated measurement will therefore be 

less biased than is assumed in the model. The model will as a result tend to over compensate 

for the error and thus give a smaller reduction in error than for the larger holes. An improved 

model that takes account of the curvature of the hole edge within the PSF can be expected to 

result in a smaller error, however such a refinement is beyond the scope of the current paper. 

It should also be noted that the scanner used in this study had a relatively large field of view 

of about 1×1 m2 at a working distance of 2.5 m. Characterising the geometry of holes with 



radius less than 2 mm could be achieved more accurately with a system which has a narrower 

field of view and a smaller point spread function. 

7. Conclusions 

Automated assembly often requires the ability to accurately estimate the location and 

geometry of holes. Fringe-projection-based 3D optical scanners would seem ideal for this 

purpose, being based on a non-contact measurement technique, especially on large freeform 

samples. However, evidence was found in this study that problems will occur wherever there 

are reflectivity or depth discontinuities, hindering the accurate estimation of hole sizes. In this 

paper, a solution to compensate for the errors arising due to these discontinuities around holes 

is presented, and an effective sub-pixel closed edge detection method based on a Fourier 

descriptor is proposed to facilitate the error compensation scheme. The FD method was found 

to be successful at detecting small holes which only have a few pixels along the edge. With 

the presented error compensation method, the discontinuity-induced systematic errors around 

the edges were well suppressed, and the subsequently estimated hole radii were much closer 

to the true values. The estimated RMS error in radius was decreased by a factor of 4-11× for 

the holes larger than a radius of 2 mm. The estimated centre positions were also on average 

slightly improved. 

Acknowledgements 

The authors are grateful to Mr Ben Horton for the design of the test panel, and acknowledge 

financial support from the Engineering and Physical Sciences Research Council under the 

Light Controlled Factory project EP/K018124/1. This work was also supported by National 

Nature Science Foundation of China (Grant No. 61421002), and the Fundamental Research 

Funds for the Central Universities 

 

 



References 

1. C. Munkelt, P. Kühmstedt, L. Aschermann, F. Seidel, ‘Automatic complete high-precision 

optical 3D measurement of air cooling-holes of gas turbine vanes for repair’, Proc. of SPIE 

9525, 9525121-95251217, 2015. 

2. G. Y. Tian, Z. X. Zhao, R. W. Baines, P. Corcoran, ‘A miniaturised sensor for deep hole 

diameter measurement’, Precision Engineering, 23, 236-242 (1999). 

3. Flack, D. Measurement Good Practice Guide No.41 - CMM measurement strategies. 

Teddington : National Physical Laboratory, 2001 updated 2014. 

4. S. S. Gorthi and P. Rastogi, ‘Fringe Projection Techniques: Whither we are?’, Optics and 

Lasers in Engineering, 48(2), 133-140 (2010). 

5. S. Zhang, ‘Recent progresses on real-time 3D shape measurement using digital fringe 

projection techniques’, Optics and Lasers in Engineering, 48,149-158 (2010). 

6. X. Y. Su, Q. C. Zhang, ‘Dynamic 3-D shape measurement method: a review’, Optics and 

Lasers in Engineering, 48(2), 191-204 (2010). 

7. P. Brakhage, M. Heinze, G. Notni, and R. Kowarschik, ‘Influence of the pixel size of the 

camera on 3d-measurementswith fringe projection,’ in Optical Measurement Systems for 

Industrial Inspection III, W. Osten, K. Creath, and M. Kujawinska, eds., Proceedings of SPIE 

5144, 478–483 (2003). 

8. H. Yue, H. G. Dantanarayana, Y. Wu and J. M. Huntley, ‘Reduction of systematic errors in 

structured light metrology at discontinuities in surface reflectivity’, Optics and Lasers in 

Engineering (in preparation, to be submitted January 2018).  

9. Y. Wu, H. Dantanarayana, H. Yue, J. M. Huntley, ‘Accurate characterisation of hole 

geometries by fringe projection profilometry’, in Videometrics, Range Imaging, and 



Applications XIV, F. Remondino and M. R. Shortis, eds., Proceedings of SPIE 10332, 

1033204 (2017). 

10. H. O. Saldner and J. M. Huntley, ‘Temporal phase unwrapping: application to surface 

profiling of discontinuous objects’, Applied Optics, 36(13), 2770-2775 (1997). 

11. J. M. Huntley and H. O. Saldner, ‘Error-reduction methods for shape measurement by 

temporal phase unwrapping’, J. Opt. Soc. Am. A, 14(12), 3188-3196 (1997). 

12. J. Canny, ‘A computational approach to edge detection’, IEEE Transactions on Pattern 

Analysis and Machine Intelligence, 8(6), 679–698 (1986).  

13. F. P. Wang, ‘The measurement of the point spread function in optical system with CCD’, 

JGTC Int. Journal of Gannan Teachers College, Papers (06), 17-18 (2005). 

14. T. P. Agustín, K. Karl, A. F. Miguel, S. C. Daniel. ‘Accurate subpixel edge location based 

on partial area effect’, Image and Vision Computing, 31, 72–90 (2013). 

15. M. Sjödahl and B. F. Oreb, ‘Stitching interferometric measurement data for inspection of 

large optical components’, Optical Engineering, 41(2), 403–408 (2002). 

16. J. J. McKeown, D. Meegan and D. Sprevak, ‘An introduction to unconstrained 

optimisation’, IOP Publishing, Bristol (1990).  

 

 

  



Appendix 1 
This appendix describes some of the mathematical details of the Fourier Descriptor method 

first introduced in section 4. 

Minimisation of Equation (6) with respect to the two intensity values I1 and I2 leads to the 

following pair of equations: 
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The derivatives with respect to the Fourier coefficients 𝑎𝑎0, …𝑎𝑎𝑁𝑁𝑓𝑓 and 𝑏𝑏1, … 𝑏𝑏𝑁𝑁𝑓𝑓 reduce to line 

integrals along the contour C: 
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where  

                                               2/)( 21 III += .                                             (11) 

For a given current estimate of the contour, equation (9) is easily solved to give the least 

squares estimator for I1 and I2 as follows: 

                                            1,2      ,
d

d),(

==
∫

∫
i

A

AyxI
I

i

i

R

R
i .                                           (12) 



Equation (10) is, however, nonlinear and should be solved by an iterative technique (Gauss-

Newton method in this study). The iterative scheme used involves solving for the vector d  

                                          gHd −=                                                 (13) 

where g donates the gradient vector of F (see equation (10)) with respect to each of the free 

parameters, and H is the Hessian matrix (matrix of second derivatives such that 

jiij xxFH ∂∂∂= 2 ) [16]. The solution vector x is then updated as follows at the kth step: 

                       dxx +=+ )()1( kk                                          (14) 

Equations (13) and (14) are iterated from an initial estimate for x until convergence is 

achieved. The format for x is: 
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    The entries for the Hessian matrix can be calculated as follows: 
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Once the x vector has been calculated, sub-pixel edge coordinates can be calculated at any 

desired φ value by equation (5).   



When implementing the line integrals along the contour (Equations (10) and (16)), the 

continuous integrals are replaced by sums over the relevant sampled quantities, where the 

number of samples should be more than 2Nf to ensure adequate sampling according to the 

Shannon sampling criterion. Computational effort for these two line integrals is significantly 

reduced, compared to a direct implementation, through the use of a 1-D fast Fourier 

transform.  

In order to increase robustness if the initial parameter estimate vector is insufficiently 

accurate, a simple modification to equation (14) can be applied [16]: 

 dxx γ+=+ )()1( kk . (17) 

The scalar γ is normally chosen to be 1, but if F is increased, the value of γ which minimizes 

F is used instead. A further modification involves testing for negative eigenvalues of H. If 

they are found, a scaled identity matrix is added to H to ensure all eigenvalues are positive.  

 

  



Tables 

Table 1. The error of radii and centre estimation of simulated circles with sizes between 5-20 

image pixels. The simulated images were smoothed with a kernel of Nk = 5 and Gaussian 

noise of SNR = 100 was added. All errors are given in units of one thousandth of a pixel.  

 Radius=20 pixels  Radius=10 pixels Radius=5 pixels 

rrδ σ±  -58.8 ± 58.9 -61.2 ± 61.4 171.2± 172.3 

( )yx yx δδ σδσδ ±± ,  
(-0.55 ± 5.3, -0.36 ± 

5.4) 

(-0.38 ± 9.7, -0.93 ± 

9.2) 

(-1.9 ± 11.5, -1.1 ± 

11.7) 

 

 

 

Table 2.  Errors in estimated hole radius and location before DMA error compensation.  

Error type (mm) 
/hole radius 
(mm) 

15  8  4  2  1  

Estimated radius 
mean error 0.2235 0.3111 0.2900 0.3582 0.4694 

Estimated radius 
RMS error 0.2243 0.3130 0.2942 0.3591 0.4709 

Centres 
alignment RMS 
error 

0.0991 0.0273 0.0257 0.0336 0.0293 

 

  



 

Table 3.  Errors in estimated hole radius and location with DMA error compensation. 
  

 
Error type (mm) 
/hole radius 
(mm) 

15  8  4  2  1  

Estimated radius 
mean error -0.0074 -0.0110 -0.0258 0.0825 0.3579 

Estimated radius 
RMS error 0.0204 0.0324 0.0512 0.0875 0.3602 

Centres 
alignment error 0.0669 0.0113 0.0239 0.0319 0.0413 

 
 

 

  



Figures 

 

Figure 1.  Aluminium test panel with arrays of holes, the diameters of which range from 30 

mm down to 1 mm. 



  

 

Figure 2. Standard image processing procedures applied to the texture image (a). Edges 

within the image are detected by a Canny operator (b); connected edge points are given 

unique labels (c); ellipse fitting to each labelled edge identifies the holes, and determines the 

hole centres and circumference pixels on the texture image plane (d). 

 

 



 

Figure 3.  Estimated radius (units: mm) for each of the holes with a nominal radius of 8 mm, 

obtained by fitting an ellipse to the 3D X,Y,Z fringe projection data on the edge pixels of the 

holes. The holes occupy the bottom left corner of the test plate shown in Fig. 2(a). 

  



 

(a) (b) 

 
 

 

Figure 4. DMA error around the edge of a hole.  (a) Experimental height distribution in 

neighbourhood of a 4-mm radius hole measured by fringe projection, where indices (p, q) 

denote the location of a given pixel within the sub-image; (b) an illustration of how DMA 

error affects the estimation of hole radius. 

 

 

  



 

Figure 5. 1-D model of DMA formation. Image-plane intensity distribution I(x) for sample 

containing hole, with uniform illumination (a) and fringe illumination (b), and corresponding 

unwrapped phase ωx(x) (c), assuming ‘zero-width’ point spread function. Modelled phase 

ω�𝑥𝑥(𝑥𝑥) (d) and apparent height profile (e) for the case of a PSF diameter equal to 10% of the 

field of view and a 45° projection angle.  

  



 

 

 

Figure 6. Schematic of Point Spread Function (PSF) and Least Squares Fitting (LSF) zones 

around a hole (solid line). The grey area denotes the area of integration of the compensation 

model to correct the phase value at pixel (xc, yc). 

 

  



 

Figure 7(a) Correction of phase at grey-shaded pixel, with centre coordinates (xc,yc), in the 

neighbourhood of a hole edge (solid black curve). Labels (1,2,3) denote three sub-pixel points 

on the edge of the hole, of which point 2 is closest to (xc,yc). Arrows indicate the direction of 

the edge normal. (b) Rotation of the pixel grid onto coordinate system (𝑥𝑥′, 𝑦𝑦′) which has its 

origin O at the closest sub-pixel edge point to (xc,yc), with 𝑥𝑥′ and 𝑦𝑦′ respectively 

perpendicular and parallel to the hole edge.  

 

 

 

 

 



(a) 

 

(b) 

 

(c) 

 

    

Figure 8. Estimated edge of a hole from one of the sub-images with the sub-pixel edge 

detection method from [14] (green dots) and the Fourier Descriptor method (continuous red 

line) for holes of radius 4 mm (a), 2 mm (b) and 1 mm (c). 



  

Figure 9.  Model for a hole within a texture image ),( yxI  as a closed contour of arbitrary 

shape, separating regions of constant intensity magnitudes I1 and I2 inside and outside the 

contour, respectively.   



(a) (b) 

  
  

Figure 10. Height distribution around a 4 mm radius hole (a) before and (b) after DMA error 

compensation. 

 

  



 
 

 
Figure 11. Root mean square radius and centre coordinate errors before and after DMA 

compensation for hole radii ranging from 1-15 mm.   



 

Figure 12. Limitation of DMA model when the PSF radius approaches that of the hole. 

Scattered light from the points within the cross-hatched regions contributes to the optical 

signal measured at point (xc,yc), but is not accounted for in the model. 
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