Loughborough University
Browse
Krylov Procedia Engineering 2017.pdf (437.88 kB)

Acoustic black holes for flexural waves: A smart approach to vibration damping

Download (437.88 kB)
journal contribution
posted on 2017-09-20, 14:47 authored by Victor V. Krylov
The present paper provides a brief review of the theoretical and experimental investigations of 'acoustic black holes' for flexural waves in plate-like structures. Such acoustic black holes are relatively new physical objects that can absorb almost 100% of the incident wave energy. This makes them attractive for vibration damping in plate-like structures. The main principle of the acoustic black holes is based on a linear or higher order decrease in velocity of the incident flexural wave with propagation distance to almost zero. The decrease in velocity should be accompanied by efficient energy absorption in the area of very low velocity via insertion of small pieces of absorbing materials. This principle can be applied to achieve efficient damping of flexural waves and vibrations in plate-like structures using both one-dimensional acoustic black holes (power-law-profiled wedges) and two-dimensional acoustic black holes (power-law-profiled cylindrical indentations). The key advantage of using acoustic black holes for damping structural vibrations is that it requires very small amounts of added damping materials, in comparison with traditional methods, which is especially important for vibration damping in light-weight structures.

History

School

  • Aeronautical, Automotive, Chemical and Materials Engineering

Department

  • Aeronautical and Automotive Engineering

Published in

Procedia Engineering 199:56-61 · September 2017

Volume

199

Pages

56 - 61

Citation

KRYLOV, V.V., 2017. Acoustic black holes for flexural waves: A smart approach to vibration damping. Procedia Engineering, 199, pp. 56-61.

Publisher

© The Authors. Published by Elsevier

Version

  • VoR (Version of Record)

Publisher statement

This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/

Acceptance date

2017-06-20

Publication date

2017-09-12

Notes

Presented at the X International Conference on Structural Dynamics, EURODYN 2017. This is an Open Access Article. It is published by Elsevier under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 Unported Licence (CC BY-NC-ND). Full details of this licence are available at: http://creativecommons.org/licenses/by-nc-nd/4.0/

ISSN

1877-7058

Language

  • en

Usage metrics

    Loughborough Publications

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC