eph1722.pdf (816.52 kB)

Acute and chronic effect of sprint interval training combined with post-exercise blood flow restriction in trained individuals

Download (816.52 kB)
journal contribution
posted on 05.11.2015, 13:48 by Conor W. Taylor, Stephen A. Ingham, Richard Ferguson
New Findings What is the central question of this study? Does the combination of sprint interval training with postexercise blood-flow restriction enhance maximal aerobic physiology and performance in trained individuals? What is the main finding and its importance? We demonstrate the potency of combining blood-flow restriction with sprint interval training in increasing maximal oxygen uptake in trained individuals; however, this did not translate to an enhanced exercise performance. We also show that blood-flow restriction combined with sprint interval training enhanced postexercise hypoxia-inducible factor-1α mRNA expression, suggesting the possibility for greater hypoxia-mediated adaptations, such as enhanced capillary growth, with this intervention. This investigation assessed the efficacy of sprint interval training (SIT) combined with postexercise blood-flow restriction as a novel approach to enhance maximal aerobic physiology and performance. In study 1, a between-groups design was used to determine whether 4 weeks (2 days per week) of SIT (repeated 30 s maximal sprint cycling) combined with postexercise blood-flow restriction (BFR) enhanced maximal oxygen uptake (inline image) and 15 km cycling time-trial performance (15 km TT) compared with SIT alone (CON) in trained individuals. The inline image increased after BFR by 4.5% (P = 0.01) but was unchanged after CON. There was no difference in 15 km TT performance after CON or BFR. In study 2, using a repeated-measures design, participants performed an acute bout of either BFR or CON. Muscle biopsies were taken before and after exercise to examine the activation of signalling pathways regulating angiogenesis and mitochondrial biogenesis. Phosphorylation of p38MAPKThr180/Tyr182 increased by a similar extent after CON and BFR. There was no difference in the magnitude of increase in PGC-1α, VEGF and VEGFR-2 mRNA expression between protocols; however, HIF-1α mRNA expression increased (P = 0.04) at 3 h only after BFR. We have demonstrated the potency of combining BFR with SIT in increasing inline image in trained individuals, but this did not translate to an enhanced exercise performance. Sprint interval training alone did not induce any observable adaptation. Although the mechanisms are not fully understood, we present preliminary evidence that BFR leads to enhanced HIF-1α-mediated cell signalling.

Funding

This project was partially supported by a grant from the English Institute of Sport.

History

School

  • Sport, Exercise and Health Sciences

Published in

Experimental Physiology

Citation

TAYLOR, C.W., INGHAM, S.A. and FERGUSON, R.A., 2016. Acute and chronic effect of sprint interval training combined with post-exercise blood flow restriction in trained individuals. Experimental Physiology, 101(1), pp.143-154.

Publisher

© Wiley

Version

AM (Accepted Manuscript)

Publisher statement

This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/

Publication date

2016

Notes

This is the peer reviewed version of the following article: TAYLOR, C.W., INGHAM, S.A. and FERGUSON, R.A., 2016. Acute and chronic effect of sprint interval training combined with post-exercise blood flow restriction in trained individuals. Experimental Physiology, 101(1), pp.143-154., which has been published in final form at http://dx.doi.org/10.1113/EP085293. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.

ISSN

1469-445X

Language

en

Exports

Logo branding

Keywords

Exports