Loughborough University
Browse
- No file added yet -

Adapting the electrospinning process to provide three unique environments for a tri-layered in vitro model of the airway wall

Download (1.64 MB)
journal contribution
posted on 2015-04-22, 15:19 authored by Jack C. Bridge, Jonathan W. Aylott, Christopher E. Brightling, Amir M. Ghaem-Maghami, Alan J. Knox, Mark LewisMark Lewis, Felicity R.A.J. Rose, Gavin E. Morris
Electrospinning is a highly adaptable method producing porous 3D fibrous scaffolds that can be exploited in in vitro cell culture. Alterations to intrinsic parameters within the process allow a high degree of control over scaffold characteristics including fiber diameter, alignment and porosity. By developing scaffolds with similar dimensions and topographies to organ- or tissue-specific extracellular matrices (ECM), micro-environments representative to those that cells are exposed to in situ can be created. The airway bronchiole wall, comprised of three main micro-environments, was selected as a model tissue. Using decellularized airway ECM as a guide, we electrospun the non-degradable polymer, polyethylene terephthalate (PET), by three different protocols to produce three individual electrospun scaffolds optimized for epithelial, fibroblast or smooth muscle cell-culture. Using a commercially available bioreactor system, we stably co-cultured the three cell-types to provide an in vitro model of the airway wall over an extended time period. This model highlights the potential for such methods being employed in in vitro diagnostic studies investigating important inter-cellular cross-talk mechanisms or assessing novel pharmaceutical targets, by providing a relevant platform to allow the culture of fully differentiated adult cells within 3D, tissue-specific environments.

Funding

The research leading to these AirPROM results has received funding from the European Union under grant agreement n° 270194.This work was also funded by the National Centre for the Replacement, Refinement, and Reduction of Animals in Research (NC3Rs), and the Engineering and Physical Research Centre (EPSRC) Doctoral Training Centre (DTC) in Regenerative Medicine, U.K.

History

School

  • Sport, Exercise and Health Sciences

Published in

Journal of Visualized Experiments

Citation

BRIDGE, J.C. ... et al, 2015. Adapting the electrospinning process to provide three unique environments for a tri-layered in vitro model of the airway wall. Journal of Visualized Experiments, issue 101, doi: 10.3791/52986.

Publisher

Journal of Visualized Experiments (JoVE)

Version

  • VoR (Version of Record)

Publisher statement

This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 International (CC BY-NC-ND 3.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/3.0/

Publication date

2015

Notes

Published in JoVE under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported. This is the article to accompany the Journal of Visualized Experiments video. The video component of this article can be found at http://www.jove.com/video/52986/adapting-electrospinning-process-to-provide-three-unique-environments

eISSN

1940-087X

Language

  • en