osac-4-2-428.pdf (5 MB)
Download fileAdaptive delay lines for absolute distance measurements in high-speed long-range frequency scanning interferometry
journal contribution
posted on 2021-02-04, 11:45 authored by Christos Pallikarakis, Jonathan Huntley, Pablo RuizPablo RuizThe application of Frequency Scanning Interferometry to long-range (∼10 m) highspeed (upwards of 105 coordinates s-1) absolute distance measurement is currently impractical at reasonable cost due to the extremely high modulation frequencies (typically 100 GHz or more). A solution is proposed here based on an Adaptive Delay Line architecture, in which the reference beam passes through a series of N switchable delay lines, with exponentially-growing delays. The benefits include a reduction by a factor of 2𝑁 in the required signal sampling rate, in the size of dataset to be processed, and in minimum allowable source coherence length, thus paving the way for the use of fast sweeping sources such as vertical-cavity surface-emitting lasers (VCSELs) and Fourier-domain mode-locked (FDML) lasers for long-range lidars. The validity of the principle has been demonstrated experimentally by means of a three-switch prototype.
Funding
History
School
- Mechanical, Electrical and Manufacturing Engineering
Published in
OSA ContinuumVolume
4Issue
2Pages
428 - 436Publisher
Optical Society of AmericaVersion
- VoR (Version of Record)
Rights holder
© Optical Society of AmericaPublisher statement
This is an Open Access Article. It is published by the Optical Society of America under the Creative Commons Attribution 4.0 International Licence (CC BY 4.0). Full details of this licence are available at: https://creativecommons.org/licenses/by/4.0/Acceptance date
2020-11-15Publication date
2021-01-28Copyright date
2021ISSN
2578-7519Publisher version
Language
- en