MTAP-D-17-02695_R1.pdf (2.28 MB)
Adaptive multi-view video streaming using side information over peer to peer networks
journal contribution
posted on 2018-08-02, 15:22 authored by Cagri Ozcinar, Erhan EkmekciogluErhan Ekmekcioglu, Gholamreza Anbarjafari, Ahmet KondozMulti-view plus-depth-map (MVD) video streaming with autostereoscopic displays provides multi-user immersive media experiences. In this context, delivery of MVD representation to multiple clients remains a challenging problem because of the high-volume of data involved and the inherent limitations
imposed by the delivery networks. To this end, this paper investigates the side information (SI) assisted adaptation algorithm using peer-to-peer (P2P) systems. P2P delivery systems for MVD video can maximize link utilization,
preventing the transport of multiple video copies of the same packet for many users. However, the quality of experience (QoE) can be significantly degraded by dynamic variations caused by network congestions. To this end, our solution comprises the extraction of low-overhead metadata at the encoding server that is distributed through the P2P network as SI and used by P2P clients performing network adaptation. In the proposed adaptation strategy, pre-selected views are discarded at times of network congestion and reconstructed with an optimal reconstruction performance using the delivered SI and the delivered neighboring camera views. The experimental results show that the robustness
of P2P multi-view streaming using the proposed adaptation scheme is significantly increased in the P2P network.
History
School
- Loughborough University London
Published in
Multimedia Tools and ApplicationsVolume
78Issue
6Pages
7225-7242Citation
OZCINAR, C. ... et al, 2018. Adaptive multi-view video streaming using side information over peer to peer networks. Multimedia Tools and Applications, 78 (6), pp.7225–7242.Publisher
© Springer VerlagVersion
- AM (Accepted Manuscript)
Publisher statement
This is a post-peer-review, pre-copyedit version of an article published in Multimedia Tools and Applications. The final authenticated version is available online at: https://doi.org/10.1007/s11042-018-6492-5Acceptance date
2018-08-02Publication date
2018-08-08ISSN
1380-7501eISSN
1573-7721Publisher version
Language
- en