File(s) under permanent embargo

Reason: This item is currently closed access.

Additive manufactured textiles for high-performance stab resistant applications

journal contribution
posted on 08.05.2013, 10:21 by Andrew JohnsonAndrew Johnson, Guy Bingham, D.I. Wimpenny
Purpose – The purpose of this paper is to ascertain the stab resistance characteristics of a series of planar and articulated laser sintered (LS) samples, in accordance with the United Kingdom Home Office Scientific Development Branch (HOSDB) Body Armour Standard – Publication 39/07. Design/methodology/approach – A series of LS planar samples were manufactured using an EOS P100 Formiga system, manufactured from 100 per cent virgin or a 50:50 mix of recycled and virgin Nylon (PA2200), ranging in thickness from 1-10 mm. All planar samples were stab tested to the HOSDB knife-resistance (KR) level one impact energy of 24 Joules, using an in-house manufactured HOSDB guided rail drop test impact rig and standardised knives. Penetration through the underside of each sample was measured and recorded. These results were then used to develop an articulated, additive manufactured (AM) scale textile – LS from a 50:50 mix of recycled and virgin PA2200 powder. These samples were then tested using the aforementioned impact rig and stab impact energy. Findings – The research demonstrated that while virgin PA2200 sample required a minimum thickness of 8mm to achieve stab-resistance below the HOSDB maximum penetration limit of 7 mm, this figure can be reduced to 5.6mm when manufacturing LS planar samples from a 50:50 mix of virgin and recycled PA2200. Results from stab testing the articulated samples indicated a successful AM textile-like design, with a maximum knife penetration of 1.6mm – below the 7mm HOSDB limit. Originality/value – The paper describes a unique application of AM technologies for the manufacture of high-performance stab resistant AM textiles. Keywords Textile technology, Protective clothing, Advanced manufacturing technologies, Laser sintering, High-performance, Stab resistant, Additive manufactured textile, Body armour, Home Office Scientific Development Branch, United Kingdom



  • Design


JOHNSON, A., BINGHAM, G.A. and WIMPENNY, D.I., 2013. Additive manufactured textiles for high-performance stab resistant applications. Rapid Prototyping Journal, 19 (3), pp.199-207.


© Emerald Group Publishing Limited


VoR (Version of Record)

Publication date



This article is closed access.