Manufacturing and formulation of stable, high purity, and high dose bacteriophage drug products (DPs) suitable for clinical usage would benefit from improved process monitoring and control of critical process parameters that affect product quality attributes. Chemistry, Manufacturing, and Controls (CMC) for both upstream (USP) and downstream processes (DSP) need mapping of critical process parameters (CPP) and linking these to critical quality attributes (CQA) to ensure quality and consistency of phage drug substance (DS) and DPs development. Single-use technologies are increasingly becoming the go-to manufacturing option with benefits both for phage bioprocess development at the engineering run research stage and for final manufacture of the phage DS. Future phage DPs under clinical development will benefit from implementation of process analytical technologies (PAT) for better process monitoring and control. These are increasingly being used to improve process robustness (to reduce batch-to-batch variability) and productivity (yielding high phage titers). Precise delivery of stable phage DPs that are suitably formulated as liquids, gels, solid-oral dosage forms, and so forth, could significantly enhance efficacy of phage therapy outcomes. Pre-clinical development of phage DPs must include at an early stage of development, considerations for their formulation including their characterization of physiochemical properties (size, charge, etc.), buffer pH and osmolality, compatibility with regulatory approved excipients, storage stability (packaging, temperature, humidity, etc.), ease of application, patient compliance, ease of manufacturability using scalable manufacturing unit operations, cost, and regulatory requirements.
History
School
Aeronautical, Automotive, Chemical and Materials Engineering
Published by Oxford University Press on behalf of Infectious Diseases Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com
This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/pages/standard-publication-reuse-rights)