Loughborough University
Browse

Advances, challenges, and future research needs in machine learning-based crash prediction models: a systematic review

Download (1.98 MB)
journal contribution
posted on 2024-02-01, 11:43 authored by Yasir AliYasir Ali, Fizza Hussain, Md Mazharul Haque
Accurately modelling crashes, and predicting crash occurrence and associated severities are a prerequisite for devising countermeasures and developing effective road safety management strategies. To this end, crash prediction modelling using machine learning has evolved over two decades. With the advent of big data that provides unprecedented opportunities to better understand the crash mechanism and its determinants, such efforts will likely be accelerated. To gear these efforts, understanding state-of-the-art machine learning-based crash prediction models becomes paramount to summarise the lessons learned from past efforts, which can assist in developing robust and accurate models. This review paper aims to address this gap by systematically reviewing the machine learning studies on crash modelling. Models are reviewed from three aspects of the application: (a) crash occurrence (or real-time crash) prediction, (b) crash frequency prediction, and (c) injury severity prediction. Further, model intricacies that impact model performance are identified and thoroughly reviewed. This comprehensive review highlights specific gaps and future research needs in three aforementioned model applications, such as improper selection of non-crash events for crash occurrence models, the inability of future forecasting of crash frequency models, and inconsistency in injury severity classes. Critical research needs relating to model development, evaluation, and application are also discussed. This review envisages methodological advancements in machine learning models for crash prediction modelling and leveraging big data to better link crashes with its determinants.

History

School

  • Architecture, Building and Civil Engineering

Published in

Accident Analysis & Prevention

Volume

194

Publisher

Elsevier

Version

  • VoR (Version of Record)

Rights holder

© The Author(s)

Publisher statement

This is an Open Access Article. It is published by Elsevier under the Creative Commons Attribution 4.0 International Licence (CC BY). Full details of this licence are available at: https://creativecommons.org/licenses/by/4.0/

Acceptance date

2023-11-08

Publication date

2023-11-15

Copyright date

2023

ISSN

0001-4575

eISSN

1879-2057

Language

  • en

Depositor

Dr Yasir Ali. Deposit date: 30 January 2024

Article number

107378

Usage metrics

    Loughborough Publications

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC