Loughborough University
1-s2.0-S0011224013002216-main.pdf (917.51 kB)

Amphipathic polymer-mediated uptake of trehalose for dimethyl sulfoxide-free human cell cryopreservation

Download (917.51 kB)
journal contribution
posted on 2014-03-06, 10:13 authored by Duncan M.C. Sharp, Andy Picken, Timothy J. Morris, Christopher Hewitt, Karen CoopmanKaren Coopman, Nigel K.H. Slater
For stem cell therapy to become a routine reality, one of the major challenges to overcome is their storage and transportation. Currently this is achieved by cryopreserving cells utilising the cryoprotectant dimethyl sulfoxide (MeSO). MeSO is toxic to cells, leads to loss of cell functionality, and can produce severe side effects in patients. Potentially, cells could be frozen using the cryoprotectant trehalose if it could be delivered into the cells at a sufficient concentration. The novel amphipathic membrane permeabilising agent PP-50 has previously been shown to enhance trehalose uptake by erythrocytes, resulting in increased cryosurvival. Here, this work was extended to the nucleated human cell line SAOS-2. Using the optimum PP-50 concentration and media osmolarity, cell viability post-thaw was 60±2%. In addition, the number of metabolically active cells 24h post-thaw, normalised to that before freezing, was found to be between 103±4% and 91±5%. This was found to be comparable to cells frozen using MeSO. Although reduced (by 22±2%, p=0.09), the doubling time was found not to be statistically different to the non-frozen control. This was in contrast to cells frozen using MeSO, where the doubling time was significantly reduced (by 41±4%, p=0.004). PP-50 mediated trehalose delivery into cells could represent an alternative cryopreservation protocol, suitable for research and therapeutic applications. © 2013 The Authors.


This work was supported by the Bioprocessing Research Industry Club (BRIC) – BBSRC grant number BB/I016961/1. The open access licence was funded by Open Access, University of Cambridge.



  • Aeronautical, Automotive, Chemical and Materials Engineering


  • Chemical Engineering


SHARP, D.M.C. ... et al., 2013. Amphipathic polymer-mediated uptake of trehalose for dimethyl sulfoxide-free human cell cryopreservation. Cryobiology, 67 (3), pp. 305 - 311.


© The Authors. Published by Elsevier Inc.


  • VoR (Version of Record)

Publication date



This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Full details of the CC BY licence are available at: http://creativecommons.org/licenses/by/3.0/






  • en