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Abstract:   

This paper focuses on an operation optimization problem for a class of multi-head surface 

mounting machines in printed circuit board assembly lines. The problem involves five 

interrelated sub-problems: assigning nozzle types as well as components to heads, assigning 

feeders to slots and determining component pick-up and placement sequences.  According to 

the depth of making decisions, the sub-problems are first classified into two layers.  Based on 

the classification, a two-stage mixed integer linear programming (MILP) is developed to 

describe it and a two-stage problem-solving frame with a hybrid evolutionary algorithm 

(HEA) is proposed.   In the first stage, a constructive heuristic is developed to determine the 

set of nozzle types assigned to each head and the total number of assembly cycles; in the 

second stage, constructive heuristics, an evolutionary algorithm with two evolutionary 

operators and a tabu search (TS) with multiple neighbourhoods are combined to solve all the 

sub-problems simultaneously, where the results obtained in the first stage are taken as 

constraints.  Computational experiments show that the HEA can obtain good near-optimal 

solutions for small-size instances when compared with an optimal solver, Cplex, and can 

provide better results when compared with a TS and an EA for actual instances.  

Keywords: Operation optimization; Mathematical model; hybrid evolutionary algorithm; 

PCB assembly.  
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1. Introduction 

PCB assembly, through which the required electronic components are assembled onto 

PCBs, is very important to produce electronic products such as TVs and mobile phones etc.  

The most popular PCB assembly technique is surface mount technology (SMT), which 

involves three main operations including tin cream printing, component placement and joints 

welding.   Only component placement is deemed as the “bottleneck” of the process because 

its operation machines, namely surface mounting machines (SMMs), are expensive and have 

low productivity (Ho et al., 2008).  To remain competitive in the growing PCB market, PCB 

assembly companies are enthusiastic to improve the throughput rate of a PCB assembly line 

by minimizing component placement time taken by SMMs.    

SMM usually has multiple heads, as shown in Figure 1.  On this type of machine, the 

heads are sequentially arranged on a robot arm and the components are stored in stationary 

feeders.  On other types of machine, heads may be arranged on a turret (Arob and Kendall, 

2008).  The issues are addressed to minimize component placement time involves (Ayob and 

Kendall, 2008, 2009): assigning nozzle types as well as components to heads, assigning 

feeders to slots and determining component picking-up and placement sequences.  Most of 

the previous researches focus on one or two of the sub-problems.   Until now, to our 

knowledge, no search has been done to consider all the sub-problems and solve them 

simultaneously.   

head

feeder slots

camera

1, 2, …, H
PCBarm

nozzle

 
Figure 1 A SMM with an over gantry and multiple heads 

Nozzle assignment is to assign nozzle types to heads to grasp different types of 

components, with the aim of minimizing the number of nozzle changes and balancing the 

workloads over heads.  For the problem, constructive heuristics can be found in previous 

researches (Raduly-Baka et al., 2008; Guo et al., 2011; Knuutila et al., 2007; Ashayeri et al., 

2011).  Its mathematical models have been developed by Torabi et al. (2013) and Ashayeri et 

al. (2011) under different machine constraints.  
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Both feeder assignment and component placement sequencing problem have received 

great attentions in previous research.  The two problems are often viewed quadratic 

assignment problem (QAP) and travelling salesman problem (TSP) or vehicle routing 

problem (VRP) (Ball and Magazine 1988, McGinnis et al. 1992; Or and Demirkol 1995, 

Jeevan et al., 2002, Grunow et al. 2004).  The most popular constructive heuristic for the two 

sub-problems is nearest neighbour heuristic (Grunow et al., 2004, Pyottiala et al., 2013).  

Meta-heuristic approaches, especially evolutionary algorithms, have also been proposed to 

solve the two problems with different machine constraints, and some of them were combined 

with local searches.  Ho and Ji (2003) developed a hybrid GA with 2-opt local search to solve 

the two sub-problems for a machine with a turret.  This hybrid GA was then extended to 

solve the two sub-problems with different machine constraints (Ho and Ji, 2004, 2010, Ho et 

al., 2007, Ho et al. 2008).   Duman and Or (2007) compared Taboo Search (TS), Simulated 

Annealing and GA for the two sub-problems.  Chyu and Chang (2008) applied a GA-based 

algorithm with 2-opt local search to solve the two sub-problems on a turret style chip shooter 

machine.  Alkaya and Duman (2015) combined simulated annealing and the heuristics for 

TSP to solve the two problems for a chip shooter component placement machines.  As for the 

mathematical model, only few research results can be found.  Altinkemer et al. (2000) 

provided an integrated mathematical model for the two sub-problems, Ho and Ji developed 

integer programming (IP) models for a kind of PAP machine (Ho and Ji, 2009) and a 

mathematical model for a turret machine (Ho and Ji, 2010), Luo and Liu (2014) proposed a 

MILP model to a SMM for LED assembly and Alkaya and Duman (2015) formulated the 

integration of the two problems to a nonlinear integer programming model. 

It can be seen that less attention is paid on the integrated optimization of all the five sub-

problems.  In this regard, the integrated optimization problem of all the five sub-problems for 

a typical multi-head SMM is focused on in this paper.  Specifically, a two-stage mathematical 

model and a two-stage solving frame are proposed for the problem.  Constructive heuristics, 

an EA with two evolutionary operators and a tabu search (TS) with multiple neighbourhoods 

are combined to solve the sub-problems in two stages.  The hybrid algorithm is compared 

with an optimizer Cplex, a TS and an EA.  The comparison results indicate the efficiency of 

the proposed solving approach.   
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The remainder of this paper is organized as follows.  A brief description of the 

concerned machine is provided in Section 2.  Section 3 and Section 4 present a two-stage 

integer programming and a two-stage problem solving approach for the integrated operation 

optimization respectively.  Computational experiments are reported in Section 5.  Finally, 

conclusions are drawn in Section 6. 

 

2.  The Component Placement Process  

 The structure of the concerned machine is shown in Figure 1.  Suppose that the feeders 

holding the required components have been set on slots, the required nozzles have been 

equipped on heads.  The machine works with the following principles:  

1) The PCB to be assembled is loaded to and fixed on the PCB platform. 

2) The robot arm moves to the feeders to pick up H components in a certain pick-up 

order, then moves past a camera to detect and adjust components’ postures.  

3) The robot arm moves to the PCB and places the carried components to their 

corresponding placement locations in a certain placement order.  

4) If there are still components to be placed, let the robot arm change the nozzle types on 

some heads if it is needed according to nozzle assignment, then repeat the operators of 

placing components as described in 2) and 3).   

To simplify description, let the round trip of the robot arm picking up and placing H 

components be called an assembly cycle.  Obviously, the longer length the robot arm travels 

to assembly components, the longer the placement time will take, so it is reasonable to 

minimize the total travelling distance of the robot arm in order to reduce component 

placement time.  Obviously, the travelling distance is mainly determined by feeders’ 

locations and the sequences of picking-up and placing components.  It is also influenced by 

the assignments of nozzle types and components to heads since the components with a 

specific type can only be carried by the heads with a certain nozzle type and there is a fixed 

spacing distance (∆h) between two adjacent heads.   

Because the robot arm moves simultaneously in the vertical and horizontal axes, let all 

the positions of placement locations and feeders be measured by Chebychev metric in a 

Cartesian coordinate system with x-y axis.  The travelling distance of the robot arm is 
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composed of pp
ijhld , fp

ijhlsi
d , ff

sijhls ji
d , pf

ijhls j
d , f

ihsi
d  and p

ihd , denoting the path distances the robot 

arm travels from placement location i to j, from feeder si to placement location j, from feeder 

si to sj, from placement location i to feeder sj, from location o to feeder si and from 

component placement location i to location o respectively, assuming that component i is 

carried by h and j by l and that the robot arm starts and ends up at a fixed location o.   

The following assumptions are specified by the concerned multi-head SMM when the 

integrated optimization of the five sub-problems is considered:  

1) One feeder can hold components for a single type. 

2) One type of components can only be grasped by a nozzle with a certain type.   

3) The set of heads is given by H={Hm, Hs} where Hm includes the moveable heads that 

can change their nozzles during placement process and Hs includes the static heads 

that cannot change their nozzles.   

4) The set of nozzle types is given by R={Rm, Rs} where Rm includes the moveable 

nozzle types that can be changed by a moveable head during placement process and 

Rs includes the static heads that cannot be changed.  

 

3. Modelling the optimization problem  

3.1 Discussions on the problem features 

Among the five sub-problems, the assignments of nozzles and components to heads are 

usually considered separately to balance the workloads over heads or to minimize the number 

of nozzle changes (Guo et al, 2011, Ashayeri et al. 2011, Knuutila et al, 2013), which can 

indirectly reduce the total placement time.  However, their solutions only provide the number 

of components (workload) and the set of nozzle types assigned to each head, not the details of 

nozzle types and components in each assembly cycle.  We follow this idea and deal with the 

two assignments in the first stage, and then reconsider them again in the second stage 

together with the other three sub-problems.   

3.2 The MILP models 

3.2.1 An MILP model for the assignments of nozzles and components to heads in the first 

stage 
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     Based on the previous work on mathematical models (Tarobi  et al., 2013 and Ashayeri et 

al., 2011), we develop a new mathematical model in which new constraints are added.    

Parameters:   

Q= the set of component types, indexed by q∈Q;  

nq = the number of components of type q;  

bqr = 1 if the components with type q can be grasped by nozzles with type r, 0 otherwise, 

M = A very large number.  

Variables:  





=
otherwise. ,

, head  toassigned is   typenozzle if ,
0

1 hr
urh  

wqrh= the number of the components with type q, grasped by nozzle type r on head h, 

WL= the maximum workload on a head. 

MILP model for the assignments of nozzles and components to heads:  

Minimize γ1WL+γ2∑ ∑∈ ∈Hh Rr rhu  (1) 
St.                             WLwQq Rr qrh ≤∑ ∑∈ ∈

 ,     h∈H,  (2) 

qqrrhqrh nbuw ≤ ,       q∈Q, r∈R, h∈H, (3) 

qHh Rr qrh nw =∑ ∑∈ ∈
,     q∈Q,  (4) 

1≥∑ ∈ mRr rhu ,    h∈Hm, (5) 
1=∑ ∈Rr rhu ,     h∈Hs, (6) 
1≥∑ ∈Hh rhu ,     r∈Rm, (7) 
1=∑ ∈ SHh rhu ,    r∈ Rs, (8) 

urh=0,     r∈Rs,   h∈Hm, (9) 

WL∈Z+, wqrh ∈Z+, urh={0, 1},      q∈Q, r∈R, h∈H. (10) 

The objective is to minimize the weighted sum of the maximum workload and the 

number of nozzle changes, where parameters γ1 and γ2 are the weighted coefficients.  

Constraints (2) express the maximum workload WL, larger than the workload over each head.  

Constraints (3) ensure that variable wqhr is upper limited by nq if nozzle type r is assigned to 

head h, zero otherwise. Constraints (4) indicate that all the components must be assigned to 

heads.  Constraints (5) show that each moveable head should be assigned with at least one 
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moveable nozzle type and constraints (6) show that each static head could only be assigned 

with one nozzle type.  Constraints (7) ensure that each moveable nozzle type must be 

assigned to at least one head, and constraints (8) and (9) ensure each static nozzle type can 

only be assigned to a static head and cannot be assigned to a moveable head.   

A solution to the model provides the set of the nozzle types and the number of 

components assigned to a head and the maximum workload WL over heads.  To make full use 

of each head, it is reasonable to require the assembly be finished in WL assembly cycles, i.e., 

the number of assembly cycles G=WL.    

3.2.2 An MILP model for all the five sub-problems in the second stage 

     Based on TSP and QAP, a new MILP model is proposed.  Different from previous models 

(Ho and Ji, 2010; Kim and Park, 2004; Jeevan et al., 2002; Luo and Liu, 2014; Alkaya and 

Duman, 2015), more sub-problems are integrated and more real constraints are considered in 

our model: 1) Component pick-up sequence which is often omitted is considered here; 2) 

Components with specific types can only be picked up by the heads with certain nozzle types, 

instead of by all the heads; 3) A moveable nozzle type can be changed only one time on each 

moveable head during assembly process.   

Parameters,  

S= the set of feeder slots, indexed by s∈S,  

aiq = 1 if the type of component i is q, 0 otherwise;  

cir = ∑q qriqba , i.e. cir=1 if a nozzle of type r can grasp component i, 0 otherwise,    

pp
ijhld , fp

ijhlsi
d , ff

sijhls ji
d , pf

ijhls j
d , f

ihsi
d  and p

ihd - path distances in the six cases described in Section 2.  

Variables: 

xigh=1 if component i is assigned to head h in assembly cycle g, 0 otherwise; 

yghl=1 if the component on head l is placed following the component on head h in assembly 

cycle g, 0 otherwise; indexes h and l are permitted to be zero.  

zghl=1 if component on head l is picked up following the component on head h in assembly 

cycle g, 0 otherwise; indexes h and l are permitted to be zero. 

eqs=1 if the feeder for component type q is assigned to slot s, 0 otherwise;   
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vghr=1 if head h is assigned with nozzle type r in assembly cycle g;  

δghr=1 if head h changes its current nozzle type to type r in assembly cycle g, 0 otherwise;  

pp
ijf = the distance the robot arm travels from placement location i to j, 0 otherwise;  

ff
ijf = the distance the robot arm travels from feeder si to sj, 0 otherwise;  

fp
gf = the distance the robot arm travels from the feeder to the first placement location in 

assembly cycle g; 

pf
gf =the distance the robot arm travels from PCB to the feeder to pick up components in 

assembly cycle g; 

f0=the distance the robot arm travels from the original position to the feeder to pick up the 

first component;   

fe=the distance the robot arm travels from the last placement location to the original position. 

MILP model for feeder assignment, component assignment and component sequencing:  

Minimize e
G

g
pf

g
G

g
fp

g
N

i

N

ijj
ff

ij
pp

ij ffffffD +++++= ∑∑∑ ∑ === ≠= 211 ,10 )(  (12) 

St.             Myxxdf ghljgligh
pp

ijhl
pp

ij )3( −+++≥ ,   ∀i, j(j≠i), g, h, l(l≠h)  (13) 
Maeyzxxdf

Qq iqqslgghjgligh
fp

ijhls
fp

g )5( 00 −+++++≥ ∑ ∈
,  ∀i, j, g, h, l(l≠h), s (14) 

Maeaezxxdf
Qq jqqsQq iqqsghljgligh

ff
sijhls

ff
ij )5(

2121
−+++++≥ ∑∑ ∈∈

,∀i,  j(j≠i), g, h, l(l≠h), s1, 

s2(s2≠ s1)  
(15) 

Maezyxxdf
Qq jqqslghgjglhgi

f
ijhls

pf
g )5( 00,,1,1, −+++++≥ ∑ ∈−− , ∀i, j(j≠i), g>1, h, l(l≠h), s  (16) 

Maezxdf
Qq iqqshhi

f
ihs )3( 1010 −+++≥ ∑ ∈

,  ∀i, h, s (17) 

Myxdf GhiGh
p

ihe )2( 0 −++≥ ,   ∀i, h (18) 
11 =∑ ∑= ∈

G
g Hh ighx ,       ∀i  (19) 

11 ≤∑ =
N
i ighx ,        ∀g, h  (20) 

1
,0

=∑ ≠=

H

hll ghly ,        ∀g, h∈{0}∪H (21) 

1
,0

=∑ ≠=

H

lhh ghly ,        ∀g, l∈{0}∪H  (22) 

,1−≤+− HHypp ghlglgh      ∀g, h, l (23) 

1
,0

=∑ ≠=

H

lhh ghlz ,      ∀g, h∈{0}∪H  (24) 

1
,0

=∑ ≠=

H

lhh ghlz ,        ∀g, l∈{0}∪H  (25) 

1−≤+− HHttt ghlglgh ,     ∀g (26) 
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1=∑ ∈Ss qse ,     ∀q (27) 
1≤∑ ∈Qq qse ,   ∀s  (28) 

∑
=

≤
R

r
irghrigh cvx

1

,    ∀i, g, h (29) 

rhhr uv ≤1 , ∀r, h (30) 

1
1

=∑
=

R

r
ghrv , ∀ g, h (31) 

hrghr vv 1= , ∀g∈G\{1}, h∈Hs, r (32) 

hrhr v11 =δ ,  ∀h∈Hm, r∈Rm (33) 

rhgghrghr vv ,,1−−≥δ ,  ∀g∈G\{1}, h∈Hm, r∈Rm (34) 

1
1

≤∑
=

G

g
ghrδ , ∀h∈Hm, r∈Rm (35) 

xigh, eqs, vghr, δghr={0,1}, g∈G, h∈H, q∈Q, s∈S, r∈R (36) 
yghl, zghl={0,1}, g∈G, h,l∈{0}∪H  (37) 

pgh, pgl, tgh, tgl, pf
gf ≥0,  g∈G \{1}, h∈H, l∈H (38) 

pp
ijf , ff

ijf , f0, fe, fp
gf , pgi, tgi≥0, g∈G, i, j∈J. (39) 

Objective (12) is the total distance that the robot arm travels to assemble all the required 

components.  Constraints (13-18) define the distances that the robot arm travels in the six 

cases described in Section 2.  Constraints (19) and (20) show that each component must be 

assigned to a head in a certain assembly cycle and a head in each assembly cycle is assigned 

with at most one component.  Constraints (21-23) and (24-26) describe a placement sequence 

and a pick-up sequence of the components.  Constraints (27-28) ensure that a feeder must be 

assigned to a slot and one slot is at most for one feeder.  Constraints (29) ensure that a 

component i can be assigned to head h in assembly cycle g only if head h is assigned with a 

nozzle type for component i.  Constraints (30) require that a nozzle type r can be assigned to 

head h only if urh=1 (obtained by the first stage model).  Constraints (31) ensure that only one 

nozzle type can be assigned to each head h in each cycle g.  Constraints (32) indicate that the 

nozzle type on a static head cannot be changed.  Constraints (33) record a nozzle change in 

the first cycle while constraints (34) record a nozzle change in other cycles.  Constraints (35) 

ensure that a moveable nozzle type r can be changed one time on each moveable head h.  

Constraints (36-39) define the ranges of all the variables.   

The objective function together with constraints (13-39) involves a TSP and an 

assignment problem, which are two well-known NP-hard problems.  Therefore, it could be 
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solved to optimality only for very small-size of problem instances.  Consequently, it is 

necessary to develop heuristic approach to solve large-size problem instances. 

 

4. The proposed heuristic approach 

A two-stage approach composed of EA with two evolutionary operators, TS with 

multiple neighbourhoods and several constructive heuristics is proposed to solve the 

considered problem.  In the following, the way of representing a solution is explained firstly, 

followed by the analysis of the optimal pick sequence in an assembly cycle, and then the 

main components of the approach.  

4.1 Solution representation 

To simplify description, symbols H, S and Q are also used to denote the cardinalities of 

sets H, S and Q respectively without ambiguousness.  The solution for each sub-problem is 

represented by cluster and permutation.  A nozzle assignment is represented by 

NA={N1, …Ng, …NG} where Ng={ng1, …ngh, …, ngH} and ngh denotes the nozzle type on 

head h in assembly cycle g.  Similarly, an assignment of components to heads is represented 

by WA=(W1, W2, …, WG) where Wg={wg1,…wgh, …, wgH} and wgh∈{0}∪J denotes the 

component assigned to head h.  A pick-up sequence and a placement sequence of components 

in assembly cycle g are represented as Pg=(pg1,…, pgk, …,pgH) and Mg=(mg1,…, mgk, …, mgH) 

respectively where pgk and mgk denote the component that is picked up at kth step and the 

component that is placed at kth step respectively.  To simplify description, let PS=(P1, …, 

Pg, …, PG) and MS=(M1,…, Mg, …, MG).  A feeder assignment is represented as E={e1, e2, …, 

eq, …, eQ} where eq∈[1 S] denotes the slot to which the feeder for component type q is 

assigned.  Values of wgh, pgk and mgk may be zero, denoting that no component is assigned to 

head h or no component is picked up or placed at k-th step in assembly cycle g.  

4.2 The optimal pick sequence in a given assembly cycle 

When other decisions are given, the optimal pick-up sequence of the components 

{wg1, …, wgl, …, wgH} in assembly cycle g(1<g<G)  must be one of the two orders that the 

components encounter their corresponding heads when the robot arm travels directly from 

one side to the other side along slots.  Obviously, the arm must travel to a leftmost position 
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FLg and a rightmost position FRg to pick up all the components in assembly cycle g.  The 

travelling distance that the arm moves directly from FLg to FRg (or from FLg to FRg) must be 

shorter than the one that the arm reciprocates forward, according to the triangle inequality.  

That is, each component should be picked up when it encounters its head when the arm 

travels directly from one side to the other along slots, which results in the minimal travelling 

distance of the arm.  However, there are two such orders of the components and one order is 

the reverse of the other.  The best order should be the one corresponding to the minimal 

traveling distance that the arm starts from the last placement location in assembly g−1, moves 

along the slots to pick up the components, and arrives to the first placement position in 

assembly g.   

4.3 The outline of the two-stage solving approach based on EA and TS 

Corresponding to the two-stage model, a two-stage solving approach is developed.  In 

the first stage, the set of nozzle types assigned to each head and the total number of assembly 

cycles are to be determined by a constructive heuristic, while in the second stage, the sub-

problems are solved by a hybrid algorithm (HEA) of EA and TS, taking the results obtained 

in the first stage as constraints.  The flowchart of HEA is shown in Figure 2.  

Algorithm HDDE: 
Output: The best solution Xb=(NZb, Wb, Eb, PSb, MSb)
Stage 1: 
     1.1 Assign components and nozzle types to each head by using heuristic 1 and output 
the set of nozzle types assigned to each head and the total number of assembly cycles G.
Stage 2: 
     2.1 Generate an initial population: generate  feeder assignments by using heuristic 2, 
component assignments and nozzle assignments by using heuristic 3, pick-up sequences  
by using a optimal rule and placement sequences by using heuristic 4.  The initial 
population is denoted as P0=                                 where  
     2.2   Repeat

For (i=1,2,…, NP)
2.2.1 Improve population                                        by using GA operator;
2.2.2 Improve population                                    by using DDE operator; 
2.2.3 Improve population                                and                                        by  
        using TS with multiple neighborhoods. 
2.2.4 Update the best solution Xb,

            Until (the iteration number t≥MaxIter or the continuous non-improvement iteration  
                      number nt≥MaxNIter)        
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Figure 2 The frame of the proposed two stage approach HEA 
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In HEA, an EA algorithm with two evolutionary operators (denoted as GA and DDE in 

Figure 2) is developed to evolve a feeder assignment and a component assignment.  A TS 

with multiple neighbourhoods is developed to further improve solutions.  The pick-up and the 

placement sequences for the components in each assembly cycle are generated by using the 

optimal rule described in Section 4.2 and a constructive heuristic respectively when a feeder 

assignment and a component assignment are given. 

4.3.1 Heuristic for the assignments of nozzle types and components in the first stage 

(Heuristic 1) 

The aim of assigning nozzle types and components to heads in the stage is to minimize 

the maximum workload over heads and the number of nozzle changes. Notice that the 

maximum workload is the minimum if all the heads are assigned with the same number of 

components, and the number of the nozzle changes is small when a nozzle type is permitted 

to be changed one time on a moveable head.  The following heuristic tries to reduce the 

maximum workload over heads.   

Step 1: Assign an unassigned static nozzle type to an arbitrary unoccupied static head 

until all the static nozzle types are assigned to heads.  

Step 2: Assign an unassigned moveable nozzle type to an arbitrary moveable head until 

all the moveable nozzle type are assigned with heads or no moveable head is unoccupied.   

Step 3: Assign the moveable nozzle type with the maximum workload to an arbitrary 

unoccupied moveable head until all the moveable heads are assigned with nozzle types.   

Step 4: Take all the moveable nozzle types as a union nozzle type.  Assign the nozzle 

type with the maximum average workload of head to an arbitrary unoccupied static head until 

all the static heads are assigned with nozzle types.  

The heuristic determines the set of nozzle types assigned to each head h, denoted as Uh, 

and the maximum workload over heads, i.e., the number of assembly cycles.  According to 

the maximum number of basic operations in each step, the complexity of the heuristic is 

O(HQ) if Q≥R holds or O(HR) otherwise.   

4.3.2 The initial feeder assignment solutions (Heuristic 2) 
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NNH and random assignment are two common ideas to generate a feeder assignment in 

previous researches (Pyottiala et al, 2013; Ho and Ji, 2010; Ho et al., 2007; Kulak et al., 

2007).  We follow the two ideas and assign a feeder to a slot in one of the two following 

ways, each with 50% probability: 1) assign a feeder to an arbitrary slot; 2) assign a feeder to 

an arbitrary slot in the set of Q slots near to the centre of the PCB.  Repeat the above 

procedure NP times, a population with NP feeder assignment solutions is generated.   

4.3.3 The initial component assignment and nozzle assignment in the second stage  

(Heuristic 3) 

The set of components in each assembly cycle limits the components involved in the 

placement sequence for this assembly cycle, so it is reasonable to take the distances among 

placement locations into account when component assignment solution is generated.  The 

NNH based heuristic to generate a component assignment WA and a nozzle type assignment 

NA is as follows.    

Step 1: Let Ωr (r∈R) include the components that could be grasped by nozzle type r.   Set 

assembly cycle number g=1.   

Step 2: For h=1 to H: assign an arbitrary nozzle type r′∈Uh to head h, i.e., set ngh=r′.  Move r′ 

from Uh. 

Step 3: Form a component set for assembly cycle g: 

3.1 If no unassigned component can be carried by head h, i.e., Ωr(h)=∅, go to Step 3.3; 

otherwise, assign an arbitrarily component i∈Ωr(h) to head h, i.e., set wgh=i; set 

Ωr(h)= Ωr(h)\{i}, h=h+1 and record the latest assigned component wg0=i.  

3.2 If no unassigned component can be carried by head h, i.e., Ωr(h)=∅, go to Step 3.3; 

otherwise, assign the nearest component i∈Ωr(h) to the placement location of wg0 

to head h, i.e., set wgh=i; set Ωr(h)= Ωr(h)\{i}, h=h+1 and wg0=i; if h>H, go to Step 4, 

otherwise repeat this step.  

3.3 If head h is a moveable head, change the current nozzle type to an arbitrary type 

r′∈Uh, i.e., set ngh=r′, and move it from Uh, i.e., set Uh=Uh\{r′}.  If head h is a 

static head, set wgh=0 and h=h+1.  Go to Step 4 if h>H, return to Step 3.1 if both 

wg0=∅ and h≤H hold, go to Step 3.2 otherwise. 

Step 4:  Set g=g+1.  If g≤G holds, return to Step 3.1 after setting NAg=NAg−1 and h=1; 

otherwise terminate the heuristic.  
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In the heuristic, the distance of two placement locations is measured by the distance the 

robot arm travels between them instead of their Chebyshev distance.  The maximum number 

of basic operations exists in Step 3.2.  In the worst case, the complexity of the above heuristic 

is O(GN).  

4.3.4 Generating component placement sequence (Heuristic 4)  

Determining the optimal placement sequence of the components in each assembly cycle 

is equivalent to solving a TSP problem.  Inspired by this, a constructive heuristic based on 

NNH is developed to generate a component placement sequence in each assembly cycle.  

Step 1: Identify two extreme placement locations Fl and Fr with the minimum and maximum 

x-coordinate values respectively in assembly cycle g.  Schedule the component 

corresponding to location Fl as the first one in the sequence.  Set sequence index k=2. 

Step 2: Schedule the component nearest to the last sequenced component as the k-th in the 

sequence and set k=k+1.  Repeat this step until the component for location Fr is 

scheduled, resulting in a partial component placement sequence.   

Step 3: Schedule each un-scheduled component one by one at its best position in the partial 

placement sequence such that the robot arm travels the minimum distance when it 

follows the obtained placement sequence.  

The distance of two placement locations is also measured by the distance the robot arm 

travels instead of their Chebyshev distance.   Basically, the above procedures follow those of 

NNH.  So the complexity of the above heuristic is O(H), the same as that of NNH for H cities.  

4.3.5  An EA with two evolutionary operators  

Evolutionary operator is the most important component of an EA.  Many evolutionary 

operators such as partially mapped crossover, cycle crossover (CX), exchange mutation etc. 

have been used in GAs to evolve a solution (Ho and Ji, 2010; Hardas et al., 2008; Li et al., 

2008; Chen and Lin, 2007; Ho et al., 2007; Kulak et al., 2007).  Different from these 

operators, DDE operator is to generate a trial individual by adding the weighted difference 

between two target individuals in the population at the previous iteration to the third target 

individual.  An EA with two evolutionary operators are designed as follows.  

1) GA with cycle crossover (CX) for component assignment 
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CX operator (Kulak et al., 2007, Burke and Kendall, 2005) can always result in feasible 

offspring.  A CX is developed here according to the features of component assignment. 

(1) For each individual t
iW in population at generation t, if a random number r∈U(0, 1) 

is less than Pcr, execute the following cycle crossover, otherwise set 1+t
iW = t

iW . 

(2) Select a solution t
xW  by using wheel rotation method, sort all the components of 

t
xW  in a sequence on head and cycle numbers, and then execute the cycle crossover operator 

as shown in Figure 3.  Retain the best one of { t
iW , t

iO 1 , t
iO 2 } as 1+t

iW . 

Parent 2(Wx
t): 5  4  6  9  2  0  8  7  1  3

Parent 1 (Wi
t): 1  2  3  4  5  6  7  8  9  0

Offspring 1 (      ): 1  2  6  4  5  0  8  7  9  3

Offspring 2 (     ): 5  4  3  9  2  6  7  8  1  0

t
iO 1

t
iO 2  

Figure 3 The cycle crossover operator 

(3) Mutation: if a random number r∈U(0, 1) is less than Pm, randomly swap two 

components with the same nozzle types in 1+t
iW .   

2) DDE with DE/rand/1 operator for feeder assignment 

DE/rand/1 mutation (Das and Suganthan, 2011; Neri and Tirronen, 2010) which has 

been indicated to be one of the most efficient operators is adopted here.   

(1) For three feeder assignment solutions t
uE , t

rE  and t
xE  at generation t, execute the 

following mutation procedures:  

)( t
xj

t
rj

t
uj

t
ij EEELV −+=  

where t
ijV  is the element generated for the j-dimension of the i-th solution at generation t, and 

function L(x) is a mapping: x→S (the set of slots) that L(x)=x if 1≤x≤|S|, L(x)=|S|+x if x≤0 and 

L(x)=x−|S| if x>|S|. Let t
uE = t

iE , t
rE =Eb and t

xE  be an arbitrary feeder assignment at generation 

t in our implementation to give fair chance to each solution and preference to the current best 

solution Eb.  



16 

(2) Following the mutation phase, the trial individual is obtained by using crossover 

operator such that: 









>
≤

=
otherwise. ,

available, is slot  and  if ,
available, is slot  and  if ,

s
EPrE
VPrV

U t
ijc

t
ij

t
ijc

t
ij

t
ij 2

2

 

where r2~U[0,1], Pc is the crossover probability and s is an arbitrary unoccupied slot.     

(3) Selection: If t
iU  is better than t

iE , let t
i

t
i UE = .   

4.3.6 A simple TS method with multiple neighbourhoods 

TS is a widely used algorithm for NP-hard optimization problems (Glover, 1989, 1990) 

because of its simplicity and efficiency.  A TS is developed here to improve a solution.  Local 

search and tabu list is the key components in a TS.  

1) Local search adopted in TS 

Local search is the iteration of neighbourhood searches.  In previous researches (Ho and 

Ji, 2010; Chyu and Chang, 2008; Ho et al., 2007; Kulak et al., 2007; Grunow et al., 2004; 

Duman and Or, 2007), 2-opt local search and iterated swap procedures (ISP) have been 

adopted to improve a solution for feeder assignment or component sequencing problem.  In 

our paper, several neighbourhoods are defined to develop efficient local searches.   

E
shiftN ={ EE ′′ |  is obtained from E by shifting a feeder from its current slot to an 

unoccupied slot}; 

E
exchangeN ={E′ | E′ is obtained from E by exchanging the slots of two feeders}. 

inG
shiftN − ={ WW ′′ |  is obtained from W by shifting a component from one head to an 

unoccupied head}; 

inG
exchangeN − ={ WW ′′ | is obtained from W by exchanging the components on two heads}; 

 exG
shiftN − ={ WW ′′ |  is obtained from W by shifting a component subset for a mount cycle 

to another position in the sequence of all the component subsets in W};  

exG
exchangeN − ={ WW ′′ |  is obtained from W by exchanging the positions of two component 

subsets}.   
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inG
exchangeN −  has the largest size of at most N(N−1)/2.  Although it is not too large, the 

evaluating of a neighbourhood move is time-consuming because the component pick-up and 

placement sequences in an assembly cycle need to be regenerated once the components 

involved in the assembly cycle are changed. To speed up the computation, restriction 

technique is used as follows to tune neighbourhood inG
exchangeN −  to smaller, less powerful but 

easier to evaluate the neighbourhood move: 1) the exchange of components i and j is 

permitted only if the placement location of component i is near that of component j, i.e., the 

horizontal difference x
ijd  or the vertical coordinate difference y

ijd  between the two placement 

locations satisfies x
ijd ≤∆h×n1 or y

ijd ≤∆h×n2, where ∆h is the spacing distance between two 

adjacent heads, n1=H/2 and n2=2 are predetermined parameters; 2) the first improvement rule 

is used to select a neighbour of a solution, i.e., we accept the first solution encountered with 

better cost.   

2) Tabu list  

Tabu list is another key strategy of TS, used to avoid repeated searches.  In this paper, 

we memorize the component and the assembly cycle involved in the current performed move 

in the tabu list.  Any neighbourhood move in the local searches of inG
exchangeN −  and  exG

shiftN −  that 

involves a component or an assembly cycle in the tabu list is forbidden to perform in the next 

TL generations except when yields better solution.   

      In the procedures of TS, although not explicitly described, the component pick-up and 

placement sequences in an assembly cycle are always regenerated to identify an improved 

neighbour once the participated components in the cycle are changed.  Considering that it is 

time-consuming to execute TS at each generation, a probability (Ps) is set to select a solution 

to which the TS is applied.  The value of Ps is determined by pre-experiments that are 

described in Section 5.1.  

 

5. Computational experiments 

The HEA and the compared algorithms were implemented in C++ and run on a 2.4GHz 

computer with 2.0 GB Ram.  The multi-head SMM used in the experiments has the following 

settings: 5 nozzle types, 8 heads and 50 slots on one side, where nozzle types (1 2, 3) can be 

changed by moveable heads (2, 4, 6, 8); the distance between two adjacent heads is 21mm.  
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The production data for 20 different PCBs were collected from practical production to 

evaluate the proposed heuristic.   The sizes of the instances are shown in Table 1.  

Table 1 The sizes of tested instances.  
No. N Q No. N Q 
1 8 3 11 49 19 
2 16 14 12 50 20 
3 17 9 13 52 6 
4 19 9 14 54 22 
5 21 4 15 78 33 
6 21 16 16 95 12 
7 24 5 17 117 20 
8 25 9 18 168 48 
9 24 4 19 306 14 
10 32 3 20 378 12 

 

5.1 Setting the model and algorithm parameters 

Model parameters γ1 and γ2 weigh the importance of the two objectives in formula (1).  

In the experiments, we set γ1=0.6 and γ2=0.4 to give more emphasis on minimizing workload 

than minimizing the number of nozzle changes.  However, it could be any other weight pairs, 

decided by decision maker.  

For algorithm parameters, length of tabu list TL is set to a representative value 9, and 

crossover probability in DDE operator is set as Pc=1−5/Q, where Pc varying with Q tries to 

give more chances to the HEA to explore its search for the instances with large number of 

component types.  Parameters Pcr, Pm, NP and Ps are determined by using orthogonal 

experiments.  The levels of the parameters are given in Table 2.  MaxIter and MaxNIter are 

set according to experiments.   

Table 2 Combinations of algorithm parameters in experiments 
  Levels Pcr1 Pm1 NP Ps 
1 0.6 0.1 5 0.1 
2 0.7 0.2 10 0.2 
3 0.8 0.3 20 0.3 
4 0.9 0.4 30 0.4 

 

The orthogonal experiment is carried out on the instance (No.20) with the largest size, 

which is the most complex instance we collected.  The computational time is limited to 100s 

and no limit is set for parameters MaxIter and MaxNiter.  An orthogonal array L16(44) is 

selected.  For each parameter combination, the proposed algorithm is run independently 20 
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times.  The algorithm performance under each level of each parameter can be calculated.   

Figure 4 reports the factor level trend of the four parameters.  

1 1.5 2 2.5 3 3.5 4
3.12

3.122

3.124

3.126

3.128

3.13
x 104

 

 
Pcr

Pm
NP
Ps

 
Figure 4 Factor level trends of four key parameters in terms of average objective function values 

 

It can be seen from Figure 4 that the proposed algorithm has better performance under 

the four parameters with the following values: Pcr=0.6 (level 1), Pm=0.3 (level 3), NP=20 

(level 3) and Ps=0.1 (level 1).  We can also see that NP are more critical than other 

parameters according to the values of the standard deviations.  

Under these parameter settings, the algorithm is run 20 times for instance No.20 again. 

We found that the algorithm terminates less than 150 generations and no better solution could 

be found when 60 continuous un-improvement generations is exceeded, so we set the 

permitted maximum generation MaxIter=150 and the permitted continuous un-improvement 

generation number MaxNiter=60. 

5.2 Performance analysis of each component in HEA 

     To investigate the effectiveness of each component of HEA, we compare HEA with the 

variant HEA-TS, HEA-GA and HEA-DDE, in which TS, GA and DDE are taken out one by one.  

To compare the algorithms, relative percentage increase (PRI) is calculated as:  

bbc DDDPRI /)( −=  

 where Db is the objective function value of the best solution found by all the compared 

algorithms, while Dc is the objective function value of the best solution generated by a given 

algorithm.  The PRI values in terms of average objective function value are shown in Table 3.   
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Table 3 Comparison of PRI values for four algorithms 
Instance HEA HEA-GA HEA-DDE HEA-TS 

1 0.00  0.00  0.00  15.20  
2 0.00  0.37  0.38  24.81  
3 0.00  0.51  0.33  8.87  
4 0.00  2.74  1.23  6.85  
5 0.00  0.45  0.76  10.04  
6 0.00  0.23  0.43  19.43  
7 0.00  0.46  1.42  10.52  
8 0.52  1.43  0.00  10.24  
9 0.08  0.00  0.06  11.15  

10 0.23  1.37  0.00  9.87  
11 0.64  1.63  0.00  20.89  
12 0.01  0.83  0.00  19.93  
13 0.52  0.69  0.00  9.05  
14 0.19  1.10  0.00  23.12  
15 0.00  1.95  0.11  38.76  
16 0.23  0.55  0.00  19.77  
17 0.18  1.21  0.00  24.06  
18 0.00  1.56  0.43  41.76  
19 0.00  1.01  0.02  43.33  
20 0.14  0.75  0.00  35.59  

Average 0.14  0.94  0.26  20.16  
Deviation 0.20  0.69  0.42  11.63  

 

It can be observed that HEA obtains better values for all the given 20 instances than 

TEA-TS and TS is critical to the HEA.  It can also be seen that there is very small difference 

between the HEA, HEA-GA and HEA-DDE according to PRI values.  GA and DDE operators 

only have small contributions to the algorithm performance of HEA.   But when taking both 

GA and DDE out, the algorithm converges very slowly according our experiments.  

5.3 Comparison of the heuristic results with the optimal solutions for small-size instances   

The HEA is executed on small-size instances and the results are compared with those 

obtained by a MILP optimizer, Cplex.  Fifteen small-size instances with 10 slots are 

generated by simulating the real production situation.  The optimizer is permitted to run in 

600s while HEA runs 20 times for each instance and the best solution is collected.  The 

obtained results are included in Table 4.  It can be seen that the results of HEA are near to the 

optima as the average gap is 5.04% and HEA can solve all the instances in short length of 

running time.  The reason that HEA does not obtain the optima may be that several 

constructive heuristics are included.  
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Table 4 Comparison of the heuristic results with the optimal solutions 

Scale No.  Objective function values (mm)  
 
( )

%100×
−

cplex

cplexHEA

D
DD  Computation time (s) 

N×H  DHEA Dcplex   tHEA tcplex 
3×3 1  663.10 640.31  6.06  0.07 0.22 

 2  457.12 424.66  11.24  0.07 0.27 

 3  592.40 548.78  5.03  0.07 0.39 

 4  649.22 637.76  6.82  0.07 0.97 

 5  567.32 522.41  8.60  0.07 0.27 
4×4 1  700.72 668.72  4.79  0.08 14.98 

 2  469.09 453.09  4.26  0.07 463.03 

 3  592.45 576.40  5.56  0.07 33.49 

 4  667.94 640.48  6.02  0.11 285.40 

 5  583.32 552.86  5.51  0.07 19.08 
8×8 1  801.49 unsolved  -  0.08 - 

 2  520.32 unsolved  -  0.08 - 

 3  658.45 unsolved  -  0.08 - 

 4  733.01 unsolved  -  0.09 - 

 5  633.63 unsolved  -  0.09 - 
Average      5.04  0.08  

 

5.4 Comparison of HEA with TS, EA and the constructive heuristic in practical system  

Experiments on a TS and a EA are carried out to evaluate the performance of HEA.  The 

TS begins with a random initial solution, executes the same improvement procedures in 

Section 3.3.6.  The EA is a variant of HEA, taking TS out from HEA.  Within the maximum 

running time taken by HEA, both of the two algorithms run 20 times for each instance, and 

the obtained results are shown in Table 5.  The objectives of the solutions provided by the 

constructive heuristic in the current production systems are also listed in column Hori.  To 

illustrate the convergence of the compared algorithms, the curves of the objective values 

varying with time for a relatively large instance No.20. are also shown in Figure 5.  

There are few observations we would like to highlight as follows according to Table 5:  

(1) HEA outperforms TS and EA in terms of minimum objective function values for 

most instances, and obtained the minimum average PRI value.  So, it can be seen 

that HEA is the most efficient.  

(2) In terms of the average objective function values, HEA also obtains the minimum 

average PRI value and performs best.  It can be concluded that HEA is the most 

robust.  Besides, from Figure 5, it can be seen that HEA has the best convergence 

property and can easily escape from local optima.  
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(3) It can be seen that the solutions obtained by HEA, TS and EA for each instance 

make improvements on the original ones provided by the current system (as shown 

in column Hori).  This is mainly because the current system is limited to constructive 

heuristic only. 

Table 5 Comparisons of the PRI values of HEA, TS and EA 
Instance Minimal Objective function 

values 
Average objective function 

values 
Objective 

function values 
 HEA TS EA HEA TS EA Hori 

1 0.00  0.60  14.95  0.00  0.00  7.42  176.49  
2 0.00  7.92  26.36  0.00  1.78  13.86  128.82  
3 0.00  2.39  8.88  0.00  2.61  7.42  53.89  
4 0.00  5.67  5.91  0.00  2.88  4.05  20.23  
5 0.00  4.78  7.56  0.00  0.89  6.53  16.81  
6 0.00  9.61  14.75  0.00  3.25  9.19  56.93  
7 0.00  7.72  9.87  0.00  2.63  5.88  543.34  
8 0.00  4.74  8.62  0.00  2.18  5.02  170.95  
9 0.00  8.08  9.79  0.00  4.53  4.02  142.60  

10 0.00  4.05  9.16  0.00  1.86  7.73  50.69  
11 0.00  4.28  12.57  0.00  1.63  6.45  63.06  
12 0.00  3.64  9.41  0.00  1.30  4.45  67.13  
13 0.00  3.37  4.23  0.00  1.85  2.41  97.06  
14 0.00  3.97  10.25  0.00  2.36  6.50  75.87  
15 0.00  6.42  18.21  0.00  3.21  7.70  89.22  
16 0.00  3.70  8.54  0.00  2.96  7.59  100.93  
17 0.00  3.91  10.44  0.00  2.49  8.10  84.71  
18 0.00  5.41  13.50  0.00  5.59  12.46  55.14  
19 0.00  2.22  13.67  0.00  1.75  11.85  80.20  
20 0.00  2.14  14.93  0.00  1.92  10.71  67.10  

Average 0.00  4.73  11.58  0.00  2.38  7.47  107.06  
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Figure 5 Curves of the objective function values varying with time for instance No. 20. 
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6. Conclusions 

This paper considers a complex optimization problem arising in PCB assembly, which 

includes five interrelated sub-problems.  To solve it efficiently, a two-stage mathematical 

programming model and a two-stage hybrid evolutionary algorithm are proposed.  In the first 

stage, a constructive heuristic is developed to determine the set of nozzle types assigned to 

each head and the total number of assembly cycles; in the second stage, constructive 

heuristics, an evolutionary algorithm (EA) with two evolutionary operators and a tabu search 

(TS) with multiple neighbourhoods are combined to solve all the sub-problems, taking the 

results obtained in the first stage as constraints.  Experimental results show that HEA has 

better performance than other compared algorithms.  In future, we plan to investigate the 

integration optimization problem of PCB assembly which involves several surface mounting 

machines. 
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