Xia_et_al-2017-Water_Resources_Research.pdf (10.69 MB)
Download fileAn efficient and stable hydrodynamic model with novel source term discretization schemes for overland flow and flood simulations
journal contribution
posted on 2018-07-31, 08:32 authored by Xilin Xia, Qiuhua LiangQiuhua Liang, Xiaodong Ming, Jingming HouNumerical models solving the full 2-D shallow water equations (SWEs) have been increasingly used to simulate overland flows and better understand the transient flow dynamics of flash floods in a catchment. However, there still exist key challenges that have not yet been resolved for the development of fully dynamic overland flow models, related to (1) the difficulty of maintaining numerical stability and accuracy in the limit of disappearing water depth and (2) inaccurate estimation of velocities and discharges on slopes as a result of strong nonlinearity of friction terms. This paper aims to tackle these key research challenges and present a new numerical scheme for accurately and efficiently modeling large-scale transient overland flows over complex terrains. The proposed scheme features a novel surface reconstruction method (SRM) to correctly compute slope source terms and maintain numerical stability at small water depth, and a new implicit discretization method to handle the highly nonlinear friction terms. The resulting shallow water overland flow model is first validated against analytical and experimental test cases and then applied to simulate a hypothetic rainfall event in the 42 km2Haltwhistle Burn, UK.
Funding
This work is funded by the NERC SINATRA and TENDERLY projects (grant NE/K008781/1) and REMATCH project (grant NE/P015476/1).
History
School
- Architecture, Building and Civil Engineering
Published in
Water Resources ResearchVolume
53Issue
5Pages
3730 - 3759Citation
XIA, X. ... et al, 2017. An efficient and stable hydrodynamic model with novel source term discretization schemes for overland flow and flood simulations. Water Resources Research, 53 (5), pp.3730-3759.Publisher
American Geophysical Union (AGU) © The AuthorsVersion
- VoR (Version of Record)
Publisher statement
This work is made available according to the conditions of the Creative Commons Attribution 4.0 International (CC BY 4.0) licence. Full details of this licence are available at: http://creativecommons.org/licenses/by/4.0/Acceptance date
2017-04-06Publication date
2017-05-05Notes
This is an Open Access Article. It is published by the American Geophysical Union under the Creative Commons Attribution 4.0 International Licence (CC BY). Full details of this licence are available at: http://creativecommons.org/licenses/by/4.0/ISSN
0043-1397eISSN
1944-7973Publisher version
Language
- en