Loughborough University
Browse
- No file added yet -

An experimental study of the decomposition and carbonation of magnesium carbonate for medium temperature thermochemical energy storage

Download (4.78 MB)
journal contribution
posted on 2021-03-05, 09:40 authored by Daniel MahonDaniel Mahon, Gianfranco ClaudioGianfranco Claudio, Philip Eames
To improve the energy efficiency of an industrial process thermochemical energy storage (TCES) can be used to store excess or typically wasted thermal energy for utilisation later. Magnesium carbonate (MgCO3) has a turning temperature of 396 °C, a theoretical potential to store 1387 J/g and is low cost (~GBP 400/1000 kg). Research studies that assess MgCO3 for use as a medium temperature TCES material are lacking, and, given its theoretical potential, research to address this is required. Decomposition (charging) tests and carbonation (discharging) tests at a range of different temperatures and pressures, with selected different gases used during the decomposition tests, were conducted to gain a better understanding of the real potential of MgCO3 for medium temperature TCES. The thermal decomposition (charging) of MgCO3 has been investigated using thermal analysis techniques including simultaneous thermogravimetric analysis and differential scanning calorimetry (TGA/DSC), TGA with attached residual gas analyser (RGA) and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) (up to 650 °C). TGA, DSC and RGA data have been used to quantify the thermal decomposition enthalpy from each MgCO3.xH2O thermal decomposition step and separate the enthalpy from CO2 decomposition and H2O decomposition. Thermal analysis experiments were conducted at different temperatures and pressures (up to 40 bar) in a CO2 atmosphere to investigate the carbonation (discharging) and reversibility of the decarbonation–carbonation reactions for MgCO3. Experimental results have shown that MgCO3.xH2O has a three-step thermal decomposition, with a total decomposition enthalpy of ~1050 J/g under a nitrogen atmosphere. After normalisation the decomposition enthalpy due to CO2 loss equates to 1030–1054 J/g. A CO2 atmosphere is shown to change the thermal decomposition (charging) of MgCO3.xH2O, requiring a higher final temperature of ~630 °C to complete the decarbonation. The charging input power of MgCO3.xH2O was shown to vary from 4 to 8136 W/kg with different isothermal temperatures. The carbonation (discharging) of MgO was found to be problematic at pressures up to 40 bar in a pure CO2 atmosphere. The experimental results presented show MgCO3 has some characteristics that make it a candidate for thermochemical energy storage (high energy storage potential) and other characteristics that are problematic for its use (slow discharge) under the experimental test conditions. This study provides a comprehensive foundation for future research assessing the feasibility of using MgCO3 as a medium temperature TCES material. Future research to determine conditions that improve the carbonation (discharging) process of MgO is required.

Funding

SUPERGEN Energy Storage Hub

Engineering and Physical Sciences Research Council

Find out more...

History

School

  • Mechanical, Electrical and Manufacturing Engineering

Research Unit

  • Centre for Renewable Energy Systems Technology (CREST)

Published in

Energies

Volume

14

Issue

5

Publisher

MDPI

Version

  • VoR (Version of Record)

Rights holder

© The authors

Publisher statement

This is an Open Access Article. It is published by MDPI under the Creative Commons Attribution 4.0 International Licence (CC BY 4.0). Full details of this licence are available at: https://creativecommons.org/licenses/by/4.0/

Acceptance date

2021-02-22

Publication date

2021-02-28

Copyright date

2021

ISSN

1996-1073

eISSN

1996-1073

Language

  • en

Depositor

Dr Daniel Mahon. Deposit date: 4 March 2021

Article number

1316

Usage metrics

    Loughborough Publications

    Categories

    No categories selected

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC