Loughborough University
Browse
EskerModellingv4_ACCEPTED.pdf (2.27 MB)

An ice-sheet scale comparison of eskers with modelled subglacial drainage routes

Download (2.27 MB)
journal contribution
posted on 2015-06-12, 11:02 authored by Stephen J. Livingstone, R. Storrar, John HillierJohn Hillier, C.R. Stokes, C.D. Clark, L. Tarasov
Eskers record a time-integrated signature of channelised meltwater drainage during deglaciation providing vital information on the nature and evolution of subglacial drainage. In this paper, we compare the spatial pattern of eskers beneath the former Laurentide Ice Sheet with subglacial drainage routes diagnosed at discrete time intervals from the results of a numerical icesheet model. Perhaps surprisingly, we show that eskers predominantly occur in regions where modelled subglacial water flow is low. Eskers and modelled subglacial drainage routes were found to typically match for lengths <10 km, and most eskers show a better agreement with the routes close to the ice margin just prior to deglaciation. This supports a time-transgressive esker pattern, with formation in short (<10 km) segments of conduit close behind a retreating ice margin, and probably associated with thin, stagnant or sluggish ice. Esker forming conduits were probably dominated by supraglacially fed meltwater inputs. We also show that modelled subglacial drainage routes containing the largest concentrations of meltwater show a close correlation with palaeo-ice stream locations. The paucity of eskers along the terrestrial portion of these palaeo-ice streams and meltwater routes is probably due to the prevalence of distributed drainage and the high erosion potential of fast-flowing ice.

History

School

  • Social Sciences

Department

  • Geography and Environment

Published in

Geomorphology

Citation

LIVINGSTONE, S.J. ... et al, 2015. An ice-sheet scale comparison of eskers with modelled subglacial drainage routes. Geomorphology, 246, pp.104-112. .

Publisher

© Elsevier

Version

  • AM (Accepted Manuscript)

Publisher statement

This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/

Publication date

2015

Notes

This paper was accepted for publication in the journal Geomorphology and the definitive published version is available at http://dx.doi.org/10.1016/j.geomorph.2015.06.016

ISSN

1872-695X

Language

  • en

Usage metrics

    Loughborough Publications

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC