Final manuscript.pdf (7.59 MB)
An optimal control strategy for plug-in hybrid electric vehicles based on enhanced model predictive control with efficient numerical method
journal contribution
posted on 2022-05-05, 14:19 authored by Yuanjian ZhangYuanjian Zhang, Yanjun Huang, Zheng Chen, Guang Li, Yonggang LiuAdvances in machine learning inspire novel solutions for the validation of complex vehicle models, and spur an easy manner to promote energy management performance of complexly configured vehicles, such as plug-in hybrid electric vehicles (PHEVs). A constructed PHEV model, based on the four-wheel drive passenger vehicle configuration, is validated through an efficient virtual test controller (VTC) developed in this paper. The VTC is designed via a novel approach based on the least square support vector machine and random forest with the inner-interim data filtered by the ReliefF algorithm to validate the vehicle model as necessary. The paper discusses the process and highlights the accuracy improvements of the PHEV model that is achieved by implementing the VTC. The validity of the VTC is addressed by examining the PHEV model to mimic the characteristics of internal combustion engine, motor and generator behaviors observed through the benchmark test. Sufficient simulations and hardware-in-loop test are employed to demonstrate the capability of the novel VTC based model validation method in practical applications. The major novelty of this paper lies in the development of a VTC, by which the vehicle model can be efficiently developed, providing solid framework and enormous convenience for control strategy design.
Funding
National Natural Science Foundation of China under Grant 61763021 and Grant 51775063
History
School
- Aeronautical, Automotive, Chemical and Materials Engineering
Department
- Aeronautical and Automotive Engineering
Published in
IEEE Transactions on Transportation ElectrificationVolume
8Issue
2Pages
2516 - 2530Publisher
IEEEVersion
- AM (Accepted Manuscript)
Rights holder
© IEEEPublisher statement
© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Acceptance date
2021-12-29Publication date
2022-01-07Copyright date
2022ISSN
2332-7782eISSN
2332-7782Publisher version
Language
- en