Loughborough University
Browse
- No file added yet -

An unexplored role for Peroxiredoxin in exercise-induced redox signalling?

Download (714.32 kB)
journal contribution
posted on 2018-05-01, 15:30 authored by Alex Wadley, Sarah Aldred, Steven J. Coles
Peroxiredoxin (PRDX) is a ubiquitous oxidoreductase protein with a conserved ionised thiol that permits catalysis of hydrogen peroxide (H2O2) up to a million times faster than any thiol-containing signalling protein. The increased production of H2O2 within active tissues during exercise is thought to oxidise conserved cysteine thiols, which may in turn facilitate a wide variety of physiological adaptations. The precise mechanisms linking H2O2 with the oxidation of signalling thiol proteins (phosphates, kinases and transcription factors) are unclear due to these proteins' low reactivity with H2O2 relative to abundant thiol peroxidases such as PRDX. Recent work has shown that following exposure to H2O2 in vitro, the sulfenic acid of the PRDX cysteine can form mixed disulphides with transcription factors associated with cell survival. This implicates PRDX as an ‘active’ redox relay in transmitting the oxidising equivalent of H2O2 to downstream proteins. Furthermore, under oxidative stress, PRDX can form stable oxidised dimers that can be secreted into the extracellular space, potentially acting as an extracellular ‘stress’ signal. There is extensive literature assessing non-specific markers of oxidative stress in response to exercise, however the PRDX catalytic cycle may offer a more robust approach for measuring changes in redox balance following exercise. This review discusses studies assessing PRDX-mediated cellular signalling and integrates the recent advances in redox biology with investigations that have examined the role of PRDX during exercise in humans and animals. Future studies should explore the role of PRDX as a key regulator of peroxide mediated-signal transduction during exercise in humans.

History

School

  • Sport, Exercise and Health Sciences

Published in

Redox Biology

Volume

8

Pages

51 - 58

Citation

WADLEY, A.J., ALDRED, S. and COLES, S.J., 2016. An unexplored role for Peroxiredoxin in exercise-induced redox signalling?. Redox Biology, 8, pp.51-58.

Publisher

Elsevier © The Authors

Version

  • VoR (Version of Record)

Publisher statement

This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/

Publication date

2015

Notes

This is an Open Access Article. It is published by Elsevier under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Licence (CC BY-NC-ND 4.0). Full details of this licence are available at: http://creativecommons.org/licenses/by/4.0/

ISSN

2213-2317

Language

  • en

Usage metrics

    Loughborough Publications

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC