schr_part2_accepted.pdf (637.82 kB)
Download fileAnalysis of Schrodinger operators with inverse square potentials II: FEM and approximation of eigenfunctions in the periodic case
journal contribution
posted on 2015-04-01, 10:58 authored by Eugenie Hunsicker, Hengguang Li, Victor Nistor, Ville UskiIn this article, we consider the problem of optimal approximation of eigenfunctions of Schrödinger operators
with isolated inverse square potentials and of solutions to equations involving such operators. It is known in
this situation that the finite element method performs poorly with standard meshes. We construct an alter-
native class of graded meshes, and prove and numerically test optimal approximation results for the finite
element method using these meshes. Our numerical tests are in good agreement with our theoretical results.
Funding
Contract grant sponsor: Leverhulme Trust (E.H.); contract grant number: J11695 Contract grant sponsor: NSF (H.L.); contract grant number: 1158839 Contract grant sponsor: NSF (V.N.); contract grant numbers: OCI-0749202 and DMS-1016556
History
School
- Science
Department
- Mathematical Sciences