Loughborough University
JMP 2021 for LUPIN.pdf (7.64 MB)
Download file

Analytical prediction of shear angle and frictional behaviour in vibration-assisted cutting

Download (7.64 MB)
journal contribution
posted on 2021-01-04, 11:27 authored by Wei Bai, Anish RoyAnish Roy, Lingxi Guo, Jianfeng Xu, Vadim SilberschmidtVadim Silberschmidt
Vibration-assisted cutting (VAC), a promising technique, proved to enhance the machinability of difficult-to-cut materials. Its significant superiority with regard to conventional cutting (CC) is considered to be closely related to variation of a shear angle in the primary shear zone and specific frictional behaviour at tool-chip interface. This paper analyses kinematics of VAC, focusing on critical stages of tool-workpiece interaction. Based on the evolution of kinematic parameters, a transient shear angle and a tool-chip contact length are investigated in a cycle according to these stages. To predict the transient parameters, an analytical model of the cutting process is proposed based on non-equidistant shear-zone and tool-chip sliding-sticking zone theories. This model for VAC can not only predict the dominant parameters of the cutting process (e.g., cutting force, friction coefficient), but also the secondary ones (e.g., shear strain). Experimental validation of the developed model is performed with orthogonal VAC of titanium alloy, and the shear angles are measured with optical microscopy of chip samples. For various process parameters, the effective shear angle in VAC is larger than that in CC. However, the average shear angle in VAC is smaller than the shear angle in CC. The proposed model can not only effectively predict the shear angle and frictional behaviour in VAC, but also other process parameters in a vibration cycle, enriching the theory of the VAC process.


China Postdoctoral Science Foundation through grants No. 2019M652629 and No. 2019TQ0107

National Natural Science Foundation of China through grant No. 52005199

MAST: Modelling of advanced materials for simulation of transformative manufacturing processes

Engineering and Physical Sciences Research Council

Find out more...



  • Mechanical, Electrical and Manufacturing Engineering

Published in

Journal of Manufacturing Processes




37 - 46


Elsevier BV


  • AM (Accepted Manuscript)

Rights holder

© The Society of Manufacturing Engineers

Publisher statement

This paper was accepted for publication in the journal Journal of Manufacturing Processes and the definitive published version is available at https://doi.org/10.1016/j.jmapro.2020.12.026

Acceptance date


Publication date


Copyright date





  • en


Prof Vadim Silberschmidt. Deposit date: 23 December 2020