Anomalous small angle x-ray scattering simulations: proof of concept for distance measurements for nanoparticle-labelled biomacromolecules in solution..pdf (742.79 kB)
Download file

Anomalous small angle X-ray scattering simulations: proof of concept for distance measurements for nanoparticle-labelled biomacromolecules in solution

Download (742.79 kB)
journal contribution
posted on 02.06.2015, 08:00 authored by Valerie PinfieldValerie Pinfield, David J. Scott
Anomalous small angle X-ray scattering can in principle be used to determine distances between metal label species on biological molecules. Previous experimental studies in the past were unable to distinguish the label-label scattering contribution from that of the molecule, because of the use of atomic labels; these labels contribute only a small proportion of the total scattering signal. However, with the development of nanocrystal labels (of 50-100 atoms) there is the possibility for a renewed attempt at applying anomalous small angle X-ray scattering for distance measurement. This is because the contribution to the scattered signal is necessarily considerably stronger than for atomic labels. Here we demonstrate through simulations, the feasibility of the technique to determine the end-to-end distances of labelled nucleic acid molecules as well as other internal distances mimicking a labelled DNA binding protein if the labels are dissimilar metal nanocrystals. Of crucial importance is the ratio of mass of the nanocrystals to that of the labelled macromolecule, as well as the level of statistical errors in the scattering intensity measurements. The mathematics behind the distance determination process is presented, along with a fitting routine than incorporates maximum entropy regularisation. © 2014 Pinfield, Scott.

Funding

The University of Nottingham funded VJP’s post during this work. David Scott has received funding from the Science and Technology Facilities Council (UK).

History

School

  • Aeronautical, Automotive, Chemical and Materials Engineering

Department

  • Chemical Engineering

Published in

PLoS ONE

Volume

9

Issue

4

Citation

PINFIELD, V.J. and SCOTT, D.J., 2014. Anomalous small angle X-ray scattering simulations: proof of concept for distance measurements for nanoparticle-labelled biomacromolecules in solution. PLoS ONE, 9 (4), e95664.

Publisher

Public Library of Science (© Pinfield, Scott)

Version

AM (Accepted Manuscript)

Publisher statement

This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/

Publication date

2014

Notes

This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

eISSN

1932-6203

Language

en

Usage metrics

Keywords

Exports