Loughborough University
Browse
- No file added yet -

Anti-disturbance fault tolerant initial alignment for inertial navigation system subjected to multiple disturbances

Download (342.4 kB)
journal contribution
posted on 2017-11-22, 11:49 authored by Songyin Cao, Lei Guo, Wen-Hua ChenWen-Hua Chen
Modeling error, stochastic error of inertial sensor, measurement noise and environmental disturbance affect the accuracy of an inertial navigation system (INS). In addition, some unpredictable factors, such as system fault, directly affect the reliability of INSs. This paper proposes a new anti-disturbance fault tolerant alignment approach for a class of INSs sub- jected to multiple disturbances and system faults. Based on modeling and error analysis, stochastic error of inertial sensor, measurement noise, modeling error and environmental disturbance are formulated into different types of disturbances described by a Markov stochastic process, Gaussian noise and a norm-bounded variable, respectively. In order to improve the accuracy and reliability of an INS, an anti-disturbance fault tolerant filter is designed. Then, a mixed dissipative/guarantee cost performance is applied to attenuate the norm-bounded disturbance and to optimize the estimation error. Slack variables and dissipativeness are introduced to reduce the conservatism of the proposed approach. Finally, compared with the unscented Kalman filter (UKF), simulation results for self-alignment of an INS are provided based on experimental data. It can be shown that the proposed method has an enhanced disturbance rejection and attenuation performance with high reliability.

Funding

This work is partially supported by the National Natural Science Foundation of China (Grant Nos. 61320106010 and 61473249).

History

School

  • Aeronautical, Automotive, Chemical and Materials Engineering

Department

  • Aeronautical and Automotive Engineering

Published in

Aerospace Science and Technology

Volume

72

Pages

95-103

Citation

CAO, S., GUO, L. and CHEN, W-H., 2017. Anti-disturbance fault tolerant initial alignment for inertial navigation system subjected to multiple disturbances. Aerospace Science and Technology, 72, pp. 95-103.

Publisher

© Elsevier

Version

  • AM (Accepted Manuscript)

Publisher statement

This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/

Acceptance date

2017-10-31

Publication date

2017-11-03

Notes

This paper was published in the journal Aerospace Science and Technology and the definitive published version is available at https://doi.org/10.1016/j.ast.2017.10.041.

ISSN

1270-9638

Language

  • en