posted on 2023-03-02, 13:43authored byMaxime Fairon, Colin McCulloch
A double Poisson bracket, in the sense of M. Van den Bergh, is an operation on an associative algebra A which induces a Poisson bracket on each representation space Rep(A,n) in an explicit way. In this note, we study the impact of changing the Leibniz rules underlying a double bracket. This change amounts to make a suitable choice of A-bimodule structure on A⊗A. In the most important cases, we describe how the choice of A-bimodule structure fixes an analogue to Jacobi identity, and we obtain induced Poisson brackets on representation spaces. The present theory also encodes a formalization of the widespread tensor notation used to write Poisson brackets of matrices in mathematical physics
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.