Loughborough University
Browse
- No file added yet -

Arrays of coupled chemical oscillators

Download (724.83 kB)
journal contribution
posted on 2015-12-07, 14:16 authored by Derek Michael Forrester
Oscillating chemical reactions result from complex periodic changes in the concentration of the reactants. In spatially ordered ensembles of candle flame oscillators the fluctuations in the ratio of oxygen atoms with respect to that of carbon, hydrogen and nitrogen produces an oscillation in the visible part of the flame related to the energy released per unit mass of oxygen. Thus, the products of the reaction vary in concentration as a function of time, giving rise to an oscillation in the amount of soot and radiative emission. Synchronisation of interacting dynamical sub-systems occurs as arrays of flames that act as master and slave oscillators, with groups of candles numbering greater than two, creating a synchronised motion in three-dimensions. In a ring of candles the visible parts of each flame move together, up and down and back and forth, in a manner that appears like a “worship”. Here this effect is shown for rings of flames which collectively empower a central flame to pulse to greater heights. In contrast, situations where the central flames are suppressed are also found. The phenomena leads to in-phase synchronised states emerging between periods of anti-phase synchronisation for arrays with different columnar sizes of candle and positioning.

Funding

This work has been supported by the EPSRC KTA grant - “Developing prototypes and a commercial strategy for nanoblade technology

History

School

  • Aeronautical, Automotive, Chemical and Materials Engineering

Department

  • Chemical Engineering

Published in

Scientific Reports

Volume

5

Citation

FORRESTER, M., 2015. Arrays of coupled chemical oscillators. Scientific Reports, 5: 16994.

Publisher

© The Authors. Published by Nature Publishing Group

Version

  • VoR (Version of Record)

Publisher statement

This work is made available according to the conditions of the Creative Commons Attribution 4.0 International (CC BY 4.0) licence. Full details of this licence are available at: http://creativecommons.org/licenses/ by/4.0/

Publication date

2015

Notes

This is an Open Access Article. It is published by Nature under the Creative Commons Attribution 4.0 Unported Licence (CC BY). Full details of this licence are available at: http://creativecommons.org/licenses/by/4.0/ Media files for this paper are available at: http://dx.doi.org/10.17028/rd.lboro.2060739.v1

ISSN

2045-2322

Language

  • en

Usage metrics

    Loughborough Publications

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC