posted on 2017-02-15, 09:44authored byAndy Jones, Rui Chen, Angus Murray
Thermal management of aircraft heat loads is quickly becoming a limiting factor of vehicle performance and reliability. This paper details improvements in forced-convection cooled avionic module heat removal efficiency with the implementation of two-phase high thermal conductivity Vapour Chamber Heat Spreaders (VCHS). A bespoke test rig provides experimental thermal comparisons of an aluminium and embedded VCHS avionic heat exchanger. The experimental results validate a numerical thermal resistance network, which is utilised to simulate more representative avionic chassis geometries. The VCHS dramatically reduces thermal variation in circuit card and avionic heat exchanger exhaust temperatures. Increased isothermalisation of the heat exchanger greatly increases effective heat transfer area in comparison to a traditional aluminium chassis. The VCHS acts as a very effective thermal buffer between the avionic circuit cards and coolant airflow, allowing a more predictable avionic thermal behaviour irrespective of circuit card architecture. The improved heat rejection capability allows either a substantial increase in avionic growth capacity (increased power output for a fixed exhaust temperature) or a substantial reduction in mass flow rate (reduced demand on vehicle thermal management system). An avionic growth capacity of up to 58% is achieved with representative thermal loading conditions.
Funding
The project is co-funded by EPSRC (Engineering and Physical Sciences Research Council, UK) and BAE Systems.
History
School
Aeronautical, Automotive, Chemical and Materials Engineering
Department
Aeronautical and Automotive Engineering
Published in
International Journal of Thermal Technologies
Volume
6
Issue
2
Pages
103 - 111
Citation
JONES, A., CHEN, R. and MURRAY, A., 2016. Assessment of vapour chamber heat spreader implementation for avionic module thermal management. International Journal of Thermal Technologies, 6 (2), pp. 103-111.
This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/
Publication date
2016-06-01
Notes
This paper was accepted for publication in the journal International Journal of Thermal Technologies and is available at http://inpressco.com/category/ijtt/. It appears here with the kind permission of the publisher.