c2.pdf (407.65 kB)
Asymptotically conical Ricci-flat Kähler metrics on C2 with cone singularities along a complex curve
We prove an existence theorem for asymptotically conical Ricci-flat Kähler metrics on C2 with cone singularities along a smooth complex curve. These are expected to arise as blow-up limits of non-collapsed sequences of Kähler-Einstein metrics with cone singularities.
History
School
- Science
Department
- Mathematical Sciences
Published in
Journal of the London Mathematical SocietyVolume
96Issue
2Pages
425 - 454Publisher
WileyVersion
- AO (Author's Original)
Rights holder
© London Mathematical SocietyPublisher statement
This is the pre-peer reviewed version of the following article: de Borbon, M. (2017), Asymptotically conical Ricci-flat Kähler metrics on C2 with cone singularities along a complex curve. J. London Math. Soc., 96: 425-454. https://doi.org/10.1112/jlms.12070, which has been published in final form at https://doi.org/10.1112/jlms.12070. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions.Publication date
2017-08-22Copyright date
2017ISSN
0024-6107eISSN
1469-7750Publisher version
Language
- en