posted on 2019-07-11, 15:36authored byAndrew B. Robbins, Stavros Drakopoulos, Ignacio Martin-Fabiani, Sara Ronca, Austin J. Minnich
Thermally conductive polymer crystals are of both fundamental and practical interest for their high thermal conductivity that exceeds that of many metals. In particular, polyethylene fibers and oriented films
with uniaxial thermal conductivity exceeding 50 Wm−1K−1 have been reported recently, stimulating interest into the underlying microscopic thermal transport processes. While ab-initio calculations have provided insight into microscopic phonon properties for perfect crystals, such properties of actual samples have remained experimentally inaccessible. Here, we report the direct observation of thermal phonons with mean free paths up to 200 nm in semicrystalline polyethylene films using transient grating spectroscopy. Many of the mean free paths substantially exceed the crystalline
domain sizes measured using small-angle x-ray scattering, indicating that thermal phonons propagate ballistically within and across the nano-crystalline domains, with those transmitting across domain boundaries contributing nearly a third of the thermal conductivity. Our work provides the first direct determination of thermal phonon propagation lengths in molecular solids, providing insights into the microscopic origins of their high thermal conductivity.
Funding
ONR Young Investigator Award under Grant No. N00014-15-1-2688 and EPSRC, grant EP/K034405/1.
History
School
Aeronautical, Automotive, Chemical and Materials Engineering
Department
Materials
Published in
Proceedings of the National Academy of Sciences
Volume
116
Issue
35
Pages
17163-17168
Citation
ROBBINS, A.B. ... et al, 2019. Ballistic thermal phonons traversing nanocrystalline domains in oriented polyethylene. Proceedings of the National Academy of Sciences, 116(35), pp. 17163-17168.
Publisher
National Academy of Sciences
Version
AM (Accepted Manuscript)
Publisher statement
This paper was accepted for publication in the journal Proceedings of the National Academy of Sciences and the definitive published version is available at https://doi.org/10.1073/pnas.1905492116