We consider a simple pendulum whose suspension point undergoes fast vibrations in the plane of motion of the pendulum. The averaged over the fast vibrations system is a Hamiltonian system with one degree of freedom depending on two parameters. We give a complete description of bifurcations of phase portraits of this averaged system.
Published in
Communications in Nonlinear Science and Numerical SimulationVolume
47Pages
71–80Citation
NEISHTADT, A. and SHENG, K., 2016. Bifurcations of phase portraits of pendulum with vibrating suspension point. Communications in Nonlinear Science and Numerical Simulation, 47, pp. 71–80.Publisher
© ElsevierVersion
AM (Accepted Manuscript)Publisher statement
This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/Acceptance date
2016-11-03Publication date
2016-11-12Copyright date
2017Notes
This paper was accepted for publication in the journal Communications in Nonlinear Science and Numerical Simulation and the definitive published version is available at http://dx.doi.org/10.1016/j.cnsns.2016.11.003.ISSN
1007-5704Language
en