posted on 2017-11-14, 13:44authored byPhilip Catherwood, Syed S. Bukhari, Gareth Watt, William WhittowWilliam Whittow, James McLaughlin
This paper presents empirical results from a measurement campaign to investigate futuristic body-centric medical mesh networks for a hospitalized patient using flexible body-contouring antennas. It studies path loss in a medical environment (in a hospital bed in an open hospital ward) for UWB and four narrowband schemes concurrently. It firstly investigates the antenna contouring effects due to mounting the flexible antennas on various body surfaces, then uses statistical analysis to explore optimal body locations for a master node to inform allocation of processing power (assuming point-to-point link from other nodes). Results indicated how the most suitable body location varies depending on the posture and frequency scheme used. Also investigated are best route selections for multi-hop mesh network topologies for opportunistic networking for each of the presented postures and frequencies; this reveals how less hops were required to navigate around the narrowband network compared to UWB which effectively reduces required processing power and data traffic. Understanding how disparate body-centric medical devices communicate with one another in a body-mesh network is instrumental to the strategic and informed development of next generation healthcare patient monitoring solutions.
History
School
Mechanical, Electrical and Manufacturing Engineering
Published in
IET Microwaves, Antennas & Propagation
Citation
Catherwood, P. ...et al., 2018. Body-centric wireless hospital patient monitoring networks using body-contoured flexible antennas. IET Microwaves, Antennas & Propagation, 12(2), pp. 203-210.
Publisher
IET
Version
AM (Accepted Manuscript)
Publisher statement
This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/
Acceptance date
2017-10-11
Publication date
2018
Notes
This paper is a postprint of a paper submitted to and accepted for publication in IET Microwaves, Antennas and Propagation and is subject to Institution of Engineering and Technology Copyright. The copy of record is available at the IET Digital Library.