A commercial design, bench scale microfluidic processor, Microfluidics M110-P, was used to study the deagglomeration of clusters of nanosized silica particles. Breakup kinetics, mechanisms and the smallest attainable size were determined over a range of particle concentrations of up to 17% wt. in water and liquid viscosities of up to 0.09 Pa s at 1% wt. particle concentration. The device was found to be effective in achieving complete breakup of agglomerates into submicron size aggregates of around 150 nm over the range covered. A single pass was sufficient to achieve this at a low particle concentration and liquid viscosity. As the particle concentration or continuous phase viscosity was increased, either a higher number of passes or a higher power input (for the same number of passes) was required to obtain a dispersion with a size distribution in the submicron range. Breakup took place through erosion resulting in a dispersion of a given mean diameter range regardless of the operating condition. This is in line with results obtained using rotor-stators. Breakup kinetics compared on the basis of energy density indicated that whilst Microfluidizer M110-P and an in-line rotor-stator equipped with the emulsor screen are of similar performance at a viscosity of 0.01 Pa s, fines volume fraction achieved with the Microfluidizer was much higher at a viscosity of 0.09 Pa s.
Funding
The authors gratefully acknowledge the financial and technical contributions of the industrial members of the DOMINO consortium.
History
School
Aeronautical, Automotive, Chemical and Materials Engineering
Department
Chemical Engineering
Published in
Chemical Engineering Research and Design
Citation
GAVI, E. ...et al., 2018. Breakup of nanoparticle clusters using microfluidizerM110-P. Chemical Engineering Research and Design, 132, pp.902-912.
This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/
Acceptance date
2018-01-04
Publication date
2018
Notes
This paper was accepted for publication in the journal Chemical Engineering Research and Design and the definitive published version is available at https://doi.org/10.1016/j.cherd.2018.01.011. This paper was presented at International Symposium on Mixing in Industrial Processes IX (ISMIP9), Birmingham, UK, 25th-28th June 2017