Thesis-2016-Gavtash.pdf (8.53 MB)
Download file

CFD simulation of pressurised metered-does inhaler (pMDI)

Download (8.53 MB)
journal contribution
posted on 31.10.2016, 14:47 authored by Barzin Gavtash
Pressurised metered dose inhalers (pMDI) are the most widely used aerosol delivery devices to treat asthma and COPD due to its unique ability to produce numerous inhalable droplets. However the mechanism leading to droplet generation is elusive, mainly due to small length scales and short time scale, causing experimental difficulties to obtain flow information. Such lack of insight has - to date - limited predictive capability of theoretical approaches and impeded device optimisation. The main aim of this research is to improve understanding of the thermo-fluid dynamic processes leading to droplet generation by constructing validated numerical models to predict pMDI aerosol characteristics as a function of device geometry and formulation composition. The thesis presents a systematic study of existing two-phase flow models to predict the flow conditions and the rate of propellant flow through a pMDI actuator: the homogeneous equilibrium model (HEM), the slip equilibrium model (SEM) and the homogeneous frozen model (HFM). [Continues.]



  • Mechanical, Electrical and Manufacturing Engineering


© B. Gavtash

Publisher statement

This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at:

Publication date



A Doctoral Thesis. Submitted in partial fulfillment of the requirements for the award of Doctor of Philosophy of Loughborough University.



Usage metrics