Given a finite collection of lines Lj ⊂ CP2 together with real numbers 0 < βj < 1 satisfying natural constraint conditions, we show the existence of a Ricci-flat Kähler metric gRF with cone angle 2πβj along each line Lj asymptotic to a polyhedral Kähler cone at each multiple point. Moreover, we discuss a Chern-Weil formula that expresses the energy of gRF as a logarithmic Euler characteristic with points weighted according to the volume density of the metric.
Funding
AUFF Starting Grant 24285
Danish National Research Foundation Grant DNRF95 ‘Centre for Quantum Geometry of Moduli Spaces’