We investigate the situation where there is interest in ranking distributions (of income, of wealth, of health, of service levels) across a population, in which individuals are considered preferentially indistinguishable and where there is some limited information about social preferences. We use a natural dominance relation, generalized Lorenz dominance, used in welfare comparisons in economic theory. In some settings there may be additional information about preferences (for example, if there is policy statement that one distribution is preferred to another) and any dominance relation should respect such preferences. However, characterising this sort of conditional dominance relation (specifically, dominance with respect to the set of all symmetric increasing quasiconcave functions in line with given preference information) turns out to be computationally challenging. This challenge comes about because, through the assumption of symmetry, any one preference statement (“I prefer giving $100 to Jane and $110 to John over giving $150 to Jane and $90 to John”) implies a large number of other preference statements (“I prefer giving $110 to Jane and $100 to John over giving $150 to Jane and $90 to John”; “I prefer giving $100 to Jane and $110 to John over giving $90 to Jane and $150 to John”). We present theoretical results that help deal with these challenges and present tractable linear programming formulations for testing whether dominance holds between any given pair of distributions. We also propose an interactive decision support procedure for ranking a given set of distributions and demonstrate its performance through computational testing.
History
School
Business and Economics
Department
Business
Published in
European Journal of Operational Research
Volume
264
Issue
2
Pages
686 - 706
Citation
KARSU, O., MORTON, A. and ARGYRIS, N., 2018. Capturing preferences for inequality aversion in decision support. European Journal of Operational Research, 264 (2), pp. 686-706.
This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/
Acceptance date
2017-07-01
Publication date
2017-07-10
Notes
This paper was accepted for publication in the journal European Journal of Operational Research and the definitive published version is available at https://doi.org/10.1016/j.ejor.2017.07.018.