Loughborough University
bio_140_06_061002.pdf (2.49 MB)

Cellular response to cyclic compression of tissue engineered intervertebral disk constructs composed of electrospun polycaprolactone

Download (2.49 MB)
journal contribution
posted on 2018-03-13, 12:00 authored by Andrea Fotticchia, Emrah DemirciEmrah Demirci, Cristina Lenardi, Yang LiuYang Liu
There is lack of investigation capturing the complex mechanical interaction of tissue engineered IVD (intervertebral disc) constructs in physiologically-relevant environmental conditions. In this study, mechanical characterisation of anisotropic eletrospinning (ES) substrates made of polycaprolactone (PCL) was carried out in wet and dry conditions and viability of human bone marrow derived mesenchymal stem cells (hMSCs) seeded within double layers of ES PCL was also studied. Cyclic compression of IVD-like constructs composed of an agarose core confined by ES PCL double-layers was implemented using a bioreactor and the cellular response to the mechanical stimulation was evaluated. Tensile tests showed decrease of elastic modulus of ES PCL as the angle of stretching increased and at 60° stretching angle in wet, maximum ultimate tensile strength was observed. Based on the configuration of IVD-like constructs, the calculated circumferential stress experienced by the ES PCL double layers was 40 times of the vertical compressive stress. Confined compression of IVD-like constructs at 5% and 10% displacement dramatically reduced cell viability, particularly at 10%, although cell presence in small and isolated area can still be observed after mechanical conditioning. Hence, material mechanical properties of tissue-engineered scaffolds, composed of fibril structure of polymer with low melting point, are affected by the testing condition. Circumferential stress induced by axial compressive stimulation, conveyed to the ES PCL double-layer wrapped around an agarose core, can affect the viability of cells seeded at the interface, depending on the mechanical configuration and magnitude of the load.


AF’s PhD study was funded by Loughborough University and the presented work was also supported by Royal Society International Joint Project JP101627, FP7-PEOPLE-2012-IRSES (SkelGen) and EPSRC Centre for Innovative Manufacturing in Regenerative Medicine.



  • Mechanical, Electrical and Manufacturing Engineering

Published in

J Biomech Eng


FOTTICCHIA, A. ... et al, 2018. Cellular response to cyclic compression of tissue engineered intervertebral disk constructs composed of electrospun polycaprolactone. Journal of Biomechanical Engineering, 140 (6), 061002.




  • VoR (Version of Record)

Publisher statement

This work is made available according to the conditions of the Creative Commons Attribution 4.0 International (CC BY 4.0) licence. Full details of this licence are available at: http://creativecommons.org/licenses/ by/4.0/

Publication date



This is an Open Access Article. It is published by ASME under the Creative Commons Attribution 4.0 International Licence (CC BY). Full details of this licence are available at: http://creativecommons.org/licenses/by/4.0/.



Other identifier



  • en


United States