posted on 2017-12-22, 10:45authored byJames A. Ross-Naylor, M. Mijajlovic, Hu Zhang, Mark Biggs
Peptide adsorption occurs across technology, medicine, and nature. The functions of adsorbed peptides are related to their conformation. In the past, molecular simulation methods such as molecular dynamics have been used to determine key conformations of adsorbed peptides. However, the transitions between these conformations often occur too slowly to be modeled reliably by such methods. This means such transitions are less well understood. In the study reported here, discrete path sampling is used for the first time to study the potential energy surface of an adsorbed peptide (polyalanine) and the transition pathways between various stable adsorbed conformations that have been identified in prior work by two of the authors [Mijajlovic, M.; Biggs, M. J. J. Phys. Chem. C 2007, 111, 15839−15847]. Mechanisms for the switching of adsorbed polyalanine between the stable conformations are elucidated along with the energetics of these switches.
History
School
Science
Department
Chemistry
Published in
Journal of Physical Chemistry B
Citation
ROSS-TAYLOR, J.A. ... et al, 2017. Characterizing the switching transitions of an adsorbed peptide by mapping the potential energy surface. Journal of Physical Chemistry B, 121(51), pp. 11455-11464.
This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/