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Abstract 

When children learn to count and acquire a symbolic system for representing 

numbers, they map these symbols onto a pre-existing system involving approximate 

nonsymbolic representations of quantity. Little is known about this mapping process, how it 

develops and its role in the performance of formal mathematics. Using a novel task to assess 

children’s mapping ability, we show that children can map in both directions between 

symbolic and nonsymbolic numerical representations, and that this ability develops between 

the ages of 6 and 8 years. Moreover, we reveal that children’s mapping ability was related to 

their achievement on tests of school mathematics, over and above the variance accounted for 

by standard symbolic and nonsymbolic numerical tasks. These findings support the proposal 

that underlying nonsymbolic representations play a role in children’s mathematical 

development. 
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Children’s mapping between symbolic and nonsymbolic representations of number. 

What drives development in learning mathematics? Children learn a great deal about 

symbolic representations of number over the first few years of mathematics schooling. But 

they also bring to school remarkable intuitive skills about numbers and quantities. To what 

extent do these nonsymbolic abilities contribute to children’s ability to learn school 

mathematics? 

Symbolic – nonsymbolic number mappings 

We now have considerable evidence that infants, children, and adults have a system 

for representing and manipulating numerical information without using symbols. Children 

and adults can compare, add and subtract sets on the basis of number when these sets are 

represented by dot arrays or sound sequences (e.g. Barth, Kanwisher & Spelke, 2003; Barth, 

La Mont, Lipton & Spelke, 2005; Cordes, Gelman, Gallistel, & Whalen, 2001; McCrink 

&Wynn, 2004; Pica, Lemer, Izard & Dehaene, 2004; Whalen, Gallistel & Gelman, 1999). 

Performance on these tasks is characterised by an effect of the ratio, or distance, between the 

items being compared. Accuracy falls when the quantities being compared are closer together 

or the ratio between them approaches 1. This effect is thought to stem from the approximate 

nature of representations within this system. These noisy representations overlap if the 

quantities that are being compared are close together, leading to slower and less accurate 

performance. The ratio at which individuals are able to distinguish items is 2:3 at six-months-

old (Jordan, Suanda & Brannon, 2008) and 7:8 by adulthood (van Oeffelen & Vos, 1982). 

This suggests that the precision of these nonsymbolic representations changes over 

development.    

When children learn to count and start learning mathematics in school they acquire a 

new symbolic system for representing numbers. This system involves precise representations 

of quantity and also allows quantities to be compared and manipulated. The symbolic system 
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does not, however, replace the pre-existing nonsymbolic system, rather these systems become 

mapped onto one another. Evidence for this mapping comes primarily from the well-

established numerical distance effect for symbolic number comparison (e.g. Moyer & 

Landauer, 1967; Temple & Posner 1998; however see Zorzi & Butterworth 1999 for 

alternative view). When adults or children are asked to compare numerical digits their 

reaction times are affected by the numerical distance between the digits. Performance is 

slower when the digits are closer numerically than when they are more distant, mirroring the 

distance and ratio effects shown for comparison of nonsymbolic quantities. This effect arises 

because the symbolic representations are mapped onto underlying nonsymbolic 

representations and the approximate nature of the nonsymbolic representations affects 

individuals’ ability to compare the symbolic representations. Children have been found to 

show a numerical distance effect from the age of 5, and the size of this effect reduces over 

development (Holloway & Ansari, 2008a; Sekuler & Mierkiewicz, 1977). The decrease in the 

size of the distance effect may represent an increase in the precision of children’s 

nonsymbolic representations, or may represent an increase in the precision of the mapping 

between symbolic and nonsymbolic representations.  

Furthermore, children can use the nonsymbolic system to perform arithmetic with 

symbolic representations before they have learnt symbolic arithmetic (Gilmore, McCarthy & 

Spelke, 2007) and the nonsymbolic system also affects adults’ ability to perform symbolic 

arithmetic (Gilmore & Inglis, submitted). The symbolic system therefore appears to be 

mapped onto the pre-existing nonsymbolic system, and plays a role both when individuals’ 

compare and manipulate symbolic representations. 

To date, however, there has been little direct investigation into children’s ability to 

map between representations in each of these systems. Typically, the mapping between 

symbolic and nonsymbolic representations has been indexed by the numerical distance effect 
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for symbolic number comparison tasks (Holloway & Ansari, 2008b; Rousselle & Noël, 

2007). This measure does not directly assess an individual’s ability to map between these 

representations however, rather it represents the extent to which approximate nonsymbolic 

representations interfere with the ability to compare precise symbolic representations.  

Work involving adult participants has begun to investigate the mapping between 

nonsymbolic and symbolic representations more directly. Izard & Dehaene (2008) presented 

participants with nonsymbolic representations (dot arrays) and asked them to produce a 

symbolic estimate of the number of dots. Adult’s estimates were generally inaccurate and 

showed a tendency to underestimate, although they did increase with the numerosity of the 

set. When participants were provided with a single reference point, estimates improved 

significantly across the whole range, and not just locally around the reference point. This 

work suggests that while adults can map from nonsymbolic to symbolic representations, 

some calibration is required for these estimates to be accurate. 

Izard & Dehaene (2008) demonstrated that adults can map between symbolic and 

nonsymbolic representations of number, but we currently know little about how and when 

this ability develops. Only one study has directly tested children’s mapping ability:  Lipton & 

Spelke (2005) examined 5-year-old children’s mapping on three tasks. On a free estimation 

task where children were asked to estimate the number of items in a set, 5-year-olds who 

were skilled counters, but not those who were unskilled counters, produced estimates that 

were linearly related to numerosity across the range of arrays. Following this, children were 

shown two nonsymbolic representations and asked to choose the set with a given number of 

items. Again, skilled but not unskilled counters were able to complete this task at above 

chance levels, but many children failed to complete the task. Finally the children were shown 

two arrays, told how many items one set contained and were asked to estimate how many 

items were in the second array. Skilled but not unskilled counters were able to produce 
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estimates in the right direction but again many children failed to answer. This study 

demonstrated that many 5-year-old children were unable to map between symbolic and 

nonsymbolic representations and that the ability to map was related to knowledge of the 

symbolic system. However, we do not know how the ability to map develops after the age of 

5. Furthermore, the free-response tasks used by Litpon & Spelke (2005) proved to be 

difficult, with many children failing to produce estimates at all.   

A further gap in the literature exists as previous investigations have tended to examine 

mapping in a single direction – producing a symbolic label for a given nonsymbolic 

representation (e.g. Hollingsworth, Simmons, Coates & Cross, 1991; Izard & Dehaene, 

2008). Mapping can occur in both directions, however, from nonsymbolic to symbolic or 

from symbolic to nonsymbolic. We do not know whether individuals are equally proficient in 

mapping in either direction, or whether the direction of mapping affects performance. The 

first aim of the current research is therefore to directly examine mapping between 

nonsymbolic and symbolic representations in children, to observe whether it develops over 

middle childhood, and to test if the direction of mapping has any effect on this ability. 

Relationship with formal mathematics skills 

Although it has been frequently suggested that children’s nonsymbolic abilities are 

related to their ability to learn formal mathematics (Butterworth, 1999; Dehaene, 1997), it is 

only recently that this relationship has started to be empirically tested. Booth & Siegler 

(2008) found that children’s ability to place symbolic representations onto a number line was 

related to both mathematics achievement and accuracy at solving addition problems, as well 

as future arithmetic gains. It is not clear, however, how representations on number line tasks 

are related to general nonsymbolic representations of quantity. Number line estimation tasks 

assess only one aspect of children’s numerical representations, namely the linearity of 

children’s symbolic representations. Tasks involving more general nonsymbolic 
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representations are necessary to fully investigate the role of this system in mathematics 

learning.  

Holloway and Ansari (2008b) examined 6- to 8-year-old children’s performance on 

tests of symbolic and nonsymbolic comparison. The size of the numerical distance effect for 

symbolic comparison (an index of the connection between nonsymbolic and symbolic 

representations) was found to be significantly related to children’s scores on the Woodcock-

Johnson standardised maths test. Children who scored lower on the maths test tended to have 

larger distance effects – indicating less precise mapping between nonsymbolic and symbolic 

representations. However, there was no relationship between performance on the 

nonsymbolic comparison task and mathematics achievement. This work suggests that 

children’s nonsymbolic representations do affect their ability to learn formal mathematics, 

but only in terms of the influence of nonsymbolic representations on symbolic 

representations. Children’s ability to compare nonsymbolic representations themselves did 

not appear to be an important factor. This study did not directly assess mapping between 

nonsymbolic and symbolic representations and so it remains to be established whether this 

ability plays a role in learning mathematics. 

Further evidence for the potential importance of mapping between representations for 

the learning of mathematics comes from individuals with dyscalculia. Rousselle & Noël 

(2007) demonstrated that children with mathematical learning difficulties were slower and 

less accurate than a control group on a symbolic comparison task. But they showed no deficit 

on a task of nonsymbolic comparison. The authors conclude that children with mathematical 

learning difficulties have deficits in accessing nonsymbolic information from symbols. This 

suggests that mapping between the two systems is important for learning formal symbolic 

mathematics, but again children’s ability to directly map between symbolic and nonsymbolic 

representations was not assessed. The second aim of the current research is therefore to 
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investigate whether children’s ability to map between symbolic and nonsymbolic 

representations of number is related to performance of school mathematics.  

This paper describes two studies investigating the development of children’s 

numerical cognition and mathematics. In the first study we present a task to assess mapping 

between symbolic and nonsymbolic representations in children aged 6 and 8 years-old. The 

numerical estimation task used with adults (Izard & Dehaene, 2008) is not suitable for use 

with young children, who may have difficulties with tasks involving the production of free 

responses (Lipton & Spelke, 2005). A more structured two-alternative forced-choice task was 

therefore developed. In this task children were shown a target representation of one quantity 

(symbolic or nonsymbolic) and had to choose which of two alternative representations 

(nonsymbolic or symbolic) matched this. As this task can be bidirectional it can be used to 

investigate whether direction of mapping has any affect on performance. Difficulty was 

manipulated by varying the ratio between the two alternative choices. In the second study we 

examine how mapping ability indexed by this task and performance on standard symbolic 

and nonsymbolic comparison tasks relates to performance of school mathematics. These 

studies allow us to investigate the role of symbolic and nonsymbolic representations, and the 

mapping between them, in the development of mathematical abilities. 

Study 1 

Method 

Participants. 52 children (24 male, 28 female) took part in the study. Children in Year 

2 (n = 25) had a mean age of 6 years 9 months (range: 6 years 4 months to 7 years 3 months) 

and children in Year 4 (n = 27) had a mean age of 8 years 9 months (range: 8 years 5 months 

to 9 years 3 months). All children spoke English fluently and none had a statement of special 

educational needs. All participants were recruited through schools and received a sticker to 

thank them for taking part. 
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Materials. The mapping task was presented on a laptop computer. It consisted of 24 

experimental trials and 6 training trials. On each experimental trial a target quantity was 

presented followed by two alternative choices. On half of the trials the target quantity was an 

Arabic symbol with pre-recorded spoken label and the choice quantities were dot arrays 

(symbolic to nonsymbolic version). On the other half of the trials the target quantity was a set 

of dots and the alternative choices were Arabic symbols with spoken labels (nonsymbolic to 

symbolic version). The target quantities varied from 20 to 50 and the alternative choices 

consisted of the correct quantity and a distractor. On half of the trials the ratio between the 

correct quantity and the distractor was 0.5 (easy ratio) and on half of the trials the ratio 

between the correct quantity and the distractor was 0.67 (difficult ratio). The correct quantity 

was the larger or smaller amount an equal number of times.  The two versions of the task 

involved the same numerosities (see Table 1). 

The method of Pica et al. (2004) was used to create the dot array stimuli. On half of 

the trials dot size and total enclosure area decreased with numerosity and thus density 

increased with numerosity, and on half of the trials dot size and total enclosure area increased 

with numerosity and thus density decreased with numerosity. This prevented children from 

consistently using perceptual features to compare the dot arrays. 

Procedure. Children were tested individually in a single session in a quiet 

environment outside the classroom. Initially they were given a brief counting assessment to 

measure knowledge of symbolic numbers.  First, children were asked to count on from 

“35,36,37…” and then from “75,76,77…” to ensure they could correctly cross the decade 

boundary (i.e. to 40 and 80 respectively). Finally they were asked to count backwards from 

25 until they reached 19. Each participant was given a score out of 3. 

Following the counting assessment the children completed the mapping task. Children 

completed one block of symbolic to nonsymbolic trials and one block of nonsymbolic to 
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symbolic trials. The order in which the blocks were completed was counterbalanced across 

participants. Before each block of 12 experimental trials, the participants were presented with 

2 reference dot arrays for 3 seconds and were told how many dots were present (numerosities 

involved: 60 and 17, or 80 and 19). These numerosities were outside the range of quantities 

used in the experimental trials and helped to calibrate children’s responses (following Lipton 

& Spelke, 2005). Three training trials preceded both experimental blocks. The training trials 

involved matching a coloured piece of fruit with a block of colour. These non-numerical 

training trials allowed participants to learn the rules of the task and gain confidence before 

the numerical experimental trials. The mapping task was presented as a game which 

incorporated the experimental trials into a fun, yet simple narrative about exploring a desert 

island looking for treasure. The dot arrays represented pieces of treasure and children were 

asked to help a character guess how many there were hidden in a treasure chest. 

Results and discussion 

Children were highly accurate at completing the counting assessment (Year 4: 25 

scored 3/3 and 2 scored 2/3; Year 2: 16 scored 3/3, 8 scored 2/3 and 1 scored 1/3). Children 

who made errors were nevertheless able to recognise symbols from across the range used in 

the mapping task. Thus all children were considered to have adequate knowledge of symbolic 

numbers to complete the mapping task.  

Children’s accuracy on the mapping task demonstrated that they were able to map 

between the two representations of quantity. Children in both age groups performed above 

chance (50%) on this task (Year 2: M = 58.8%, SD = 8.2%, t(24) = 5.40, p < .001; Year 4: M 

= 68.4%, SD =10.5%, t(26) = 9.10, p < .001). Overall, children performed above chance for 

problems at both the easier (M = 71.3%, SD = 14.0%, t(51) = 10.95, p < .001) and more 

difficult ratio (M = 56.3%, SD = 15.2%, t(51) = 2.96, p = .005) and for both nonsymbolic to 
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symbolic mapping problems (M = 65.7%, SD = 13.1%, t(51) = 5.86, p < .001) and symbolic 

to nonsymbolic mapping problems (M = 61.9%, SD = 14.6%, t(51) = 8.67, p < .001).   

The effect of different task factors was examined using analysis of variance. Initial 

analysis found that there was no effect of block order and so this factor was removed from 

the analysis. A three-way mixed-design ANOVA was performed with difficulty (ratio 0.5, 

ratio 0.67) and direction of mapping (nonsymbolic to symbolic, symbolic to nonsymbolic) as 

repeated-measures factors and age (Year 2, Year 4) as a between-groups factor.  

There was a main effect of age group (F(1, 50) = 13.2, p = .001) and a main effect of 

problem difficulty (F(1, 50) = 28.2, p < .001). As predicted, children in Year 4 performed 

more accurately than children in Year 2, and the problems with a ratio of 0.5 were solved 

more accurately than problems with a ratio of 0.67. Although there was no main effect of 

direction of mapping, there was an interaction between difficulty level and direction of 

mapping (F(1, 50) = 4.0, p = .05; see Figure 1a). Simple main effects analysis revealed that 

the direction of mapping had no effect on performance at the easier ratio (F<1), but did effect 

performance at the harder ratio (F(1,51) = 6.1, p = .017). Children were more accurate on 

problems which involved mapping from a given nonsymbolic representation to two 

alternative symbols (M = 60.6%, SD = 17.5%), than on problems which involved mapping 

from a given symbol to two alternative nonsymbolic representations (M = 51.9%, SD = 

21.8%). In fact, children performed at chance level on these symbolic to nonsymbolic 

problems with the more difficult 0.67 ratio (t(51) <1, n.s.). 

The group effect of age on performance was replicated when results were considered 

on an individual basis. According to a binomial distribution, the probability of an individual 

child scoring 17 or more correctly out of 24 trials is p = .03. Using this conservative criterion 

to consider children as performing above chance on an individual basis, 3 out of 25 children 

in Year 2 met this criterion, while 14 out of 27 children in Year 4 met this criterion. These 
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proportions are significantly different (Fishers exact test p = .003). Thus development in the 

ability to map between nonsymbolic and symbolic representations of number can be seen at 

both a group level and an individual level between the ages of 6 and 8 years. 

A final set of analyses examined whether children were affected by the perceptual 

features of the nonsymbolic representations. Children’s performance for the symbolic to 

nonsymbolic mapping problems was compared for stimuli with different continuous quantity 

controls. Children were more accurate when dot size and total occupied area were positively 

correlated and density was negatively correlated with numerosity than when density was 

positively correlated with numerosity and dot size and total occupied area were negatively 

correlated with numerosity (t(51) = 7.14, p < .001). This suggests that children can map 

between symbolic and nonsymbolic representations of number more accurately when they 

can use the features of dot size and total occupied area to distinguish between alternative 

representations.  This replicates findings from previous research (e.g. Barth, La Mont, Lipton 

& Spelke, 2005). 

Study 2 

Study 1 revealed that children can map between symbolic and nonsymbolic 

representations of number, and that this ability develops with age. We then investigated how 

this ability and performance on tests of symbolic and nonsymbolic comparison are related to 

achievement in school mathematics. 
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Method 

Participants. The participants were a new group of 33 children in Year 2 (16 female 

17 male) with a mean age of 7 years 4 months (range: 6 years 11 months to 7 years 11 

months). Two children did not complete the mapping task or maths test due to absence. All 

children spoke English fluently and none had a statement of special educational needs. All 

participants were recruited through school and received stickers to thank them for taking part. 

Materials and Procedure. The children were tested in two sessions. In the first session 

children were tested individually and they completed the nonsymbolic comparison task 

followed by the symbolic comparison task and finally the mapping task. In the second session 

children were tested in pairs and each completed the mathematics test worksheet. 

The nonsymbolic and symbolic comparison tasks and mapping task were all presented 

on a laptop computer. The mapping task was the same as that described in Study 1. The two 

comparison tasks both consisted of 72 trials. On each trial two stimuli were presented in the 

centre of the screen and children had to choose the larger quantity. In the nonsymbolic 

comparison task the quantities were presented as dot arrays and in the symbolic comparison 

task the quantities were presented as Arabic symbols. In each task all combinations of the 

numbers 1 – 9 (excepting ties) were presented twice. On each trial the children responded by 

indicating on a keyboard which quantity was larger using two coloured keys. Children were 

asked to respond as quickly and as accurately as possible. In the symbolic version of the task 

the digits remained on the screen until children responded. In the nonsymbolic version of the 

task the dots remained either until children responded or for 840 msecs (whichever was 

sooner) to prevent children using slow counting procedures to compare the dot arrays. As in 

Study 1, two sets of dot stimuli were again used to prevent children from consistently using 

perceptual features to compare the arrays. Three practice trials preceded each task. 
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The mathematics test was presented on a worksheet which children completed 

independently. They were given up to 25 minutes to complete the worksheet. The test 

consisted of 63 questions testing different aspects of school mathematics knowledge. The 

first half of the test assessed knowledge of symbolic numbers, this included identifying the 

smallest or largest number in a set, ordering numbers, and completing missing items in 

ascending or descending number lines. The second half of the test assessed calculation skills, 

this included solving addition, subtraction and multiplication two- and three-term missing 

number problems, completing calculation pyramids, counting in tens and solving simple 

word problems involving doubling or halving quantities. These tasks are all typical of the 

mathematics curriculum for children of this age group. The researcher gave simple 

instructions for each question to children individually. 

Results and discussion 

As in Experiment 1, children performed above chance on the mapping task (M = 

62.0%, SD = 10.7%, t(30) = 6.23, p < .001). A two-way repeated-measures ANOVA was 

conducted on children’s accuracy scores with difficulty (ratio 0.5, ratio 0.67) and direction of 

mapping (nonsymbolic to symbolic, symbolic to nonsymbolic) as factors. There was a 

significant effect of difficulty (F(1, 30) = 8.90, p = .006) and a marginal interaction between 

difficulty and direction (F(1, 30) = 3.35, p = .077, see Figure 1b), which replicates the 

findings of Study 1. The direction of mapping had no effect on performance at the easier ratio 

(F<1), but did marginally effect performance at the harder ratio (F(1, 30) = 3.91, p = .057). 

Children were more accurate on problems which involved mapping from a given 

nonsymbolic representation to two symbols (M = 62.4%, SD = 17.2%), than on problems 

which involved mapping from a given symbol to two alternative nonsymbolic representations 

(M = 51.6%, SD = 25.2%). As in Study 1, children performed at chance level on symbolic to 

nonsymbolic problems with the more difficult 0.67 ratio (t(30) <1, n.s.). 
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Children showed high, but not ceiling level, accuracy on both the symbolic and 

nonsymbolic comparison tasks. Accuracy and mean reaction time for correct trials on the two 

tasks were compared. Children were more accurate on the symbolic comparison task than the 

nonsymbolic comparison task (t(32) = 2.55, p = .016; symbolic M = 90.2%, SD = 5.5%; 

nonsymbolic M = 87.3%, SD = 6.5%), but there was no difference in mean reaction time for 

each task (t(32) = 0.78, n.s.). 

The effect of numerical distance between the comparison items on children’s reaction 

times for the symbolic and nonsymbolic comparison tasks was examined. Mean reaction time 

for trials answered correctly was plotted against the numerical distance between the items 

(e.g. the comparison trial 4 vs 9 has a numerical distance of 5). Figure 2 shows group mean 

reaction time for each distance for both the symbolic and nonsymbolic comparison tasks. 

This reveals the characteristic numerical distance effect demonstrated in previous research: 

reaction times were longer when the numerical distance between the items was small 

(repeated-measures ANOVA shows effect of distance on RT for both symbolic, F(7,26) = 

12.87, p < .001, and nonsymbolic tasks, F(7,26) = 14.59, p < .001). A numerical distance 

effect score (NDE) was calculated for each child following the method of Holloway & Ansari 

(2008b). The NDE was given by calculating  where RTsmall was the mean 

reaction time for trials with a numerical distance of 1 or 2 and RTlarge was the mean reaction 

time for trials with a numerical distance of 5 or 6. Children’s symbolic NDE varied from 0.01 

to 0.54 (M = 0.21) and nonsymbolic NDE varied from 0.01 to 0.71 (M  = 0.26). There was no 

difference in the size of the NDE for symbolic and nonsymbolic stimuli (t(32) = 1.37, n.s.). 

The symbolic NDE was significantly correlated with performance on the test of school 

mathematics (r = -0.52, p = .003, see Figure 3), but there was no corresponding relationship 

between the test of school mathematics and nonsymbolic NDE (r = .02, n.s.). The same 

pattern was also found when only the second half of the maths test involving calculation 
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problems was considered (symbolic NDE r = -.54, p = .002; nonsymbolic NDE r = .03, n.s.). 

Children with a smaller symbolic NDE, and thus a shallower distance effect curve, scored 

higher on the test of school mathematics, replicating the finding of Holloway & Ansari 

(2008b). 

When overall accuracy was considered rather than the size of the NDE, children’s 

performance on the test of school mathematics was correlated with performance on both the 

symbolic and nonsymbolic comparison tasks (respectively r = 0.52, p = .003; r = 0.35, p = 

.05; see Figure 4). Again these correlations held up when only the calculation part of the 

maths test was considered (symbolic accuracy r = .53, p = .002; nonsymbolic accuracy r = 

.37, p = .041). However, scores on the mapping task were not correlated with performance on 

the test of school mathematics either when overall mapping score was considered or when 

symbolic to nonsymbolic and nonsymbolic to symbolic problems were considered separately  

(overall mapping score r = .167, n.s.; difficult ratio only r = .138, n.s.; symbolic to 

nonsymbolic problems r = .01, n.s.; nonsymbolic to symbolic problems r = .21, n.s.). Neither 

was performance on the mapping task related to performance on the comparison tasks 

(symbolic comparison r = -.17, n.s.; nonsymbolic comparison r = -.04, n.s.) 

A hierarchical regression was carried out to further examine the relationships among 

the measures of nonsymbolic and symbolic representations, mapping and school 

mathematics. With scores on the mathematics test as the outcome variable, nonsymbolic 

comparison accuracy score was entered to the model first, followed by symbolic comparison 

accuracy score and finally mapping score. Performance on the difficult problems for the 

mapping task were used as they were a more sensitive test of children’s mapping ability. All 

three predictors significantly improved the fit of the model when added in turn (see Table 2). 

Children’s performance on the school maths test was therefore related to their ability to 

compare nonsymbolic representations, their ability to compare symbolic representations, and 
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their ability to map between nonsymbolic and symbolic representations. To assess the relative 

contribution of scores on the two comparison tasks, a second model was run, with symbolic 

comparison score entered first, followed by nonsymbolic comparison score and finally 

mapping score. For this model, nonsymbolic comparison no longer made a significant 

improvement to the fit of the model. Thus, children’s ability to compare symbolic 

representations captures the variance in their ability to compare nonsymbolic representations, 

as well as additional variance perhaps related to knowledge of symbolic representations. 

General Discussion 

The studies reported here demonstrate the importance of basic numerical processes in 

the development of mathematics. We have shown that children are able to map between 

symbolic and nonsymbolic representations of number, that this ability develops with age and 

is not symmetrical across direction of mapping, and is related to the performance of school 

mathematics. 

Using a novel task we found that children can map in both directions between 

symbolic and nonsymbolic representations of number when the ratio involved is 0.5. 

Previous work has assessed this ability in adults, but no prior studies have directly examined 

whether children were able to do so. We have demonstrated that children from 6 years-old 

are able to choose the correct symbolic representation for a nonsymbolic array and vice-

versa, and that this ability develops with age. A connection between symbolic and 

nonsymbolic representations of number in children had previously been inferred from the 

presence of a numerical distance effect on children’s ability to compare symbolic 

representations. However, this effect only demonstrates that nonsymbolic representations 

interfere with children’s processing of symbolic representations. We have demonstrated that 

children can directly access the mapping between representations when required. 
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We found development in children’s ability to directly map between symbolic and 

nonsymbolic representations between the ages of 6 and 8 years. Previous work has found that 

there is change in both the symbolic and nonsymbolic distance effects over this period 

(Holloway & Ansari, 2008, 2008a; Sekuler & Mierkiewicz, 1977). The increased precision of 

children’s nonsymbolic representations (demonstrated by change in the nonsymbolic distance 

effect) may lead to both development in the symbolic distance effect and to development in 

mapping abilities. If nonsymbolic representations are more precise, then the effect of 

numerical distance on symbolic comparison will also be reduced, and nonsymbolic 

representations can be more precisely mapped onto symbolic representations. This does not 

necessitate a direct relationship between change in the symbolic distance effect and mapping 

abilities. However, work with adult participants has suggested that variability in nonsymbolic 

comparison tasks can only account for a small proportion of the variance in mapping tasks 

(Krueger, 1984). The causal relationships among development in symbolic comparison, 

nonsymbolic comparison and mapping ability require further investigation.  

The novel task we developed also allowed children’s mapping ability to be assessed 

in two directions: from a symbolic target to two alternative nonsymbolic options, and from a 

nonsymbolic target to two alternative symbolic options. Previous studies have typically only 

examined mapping in one direction by asking participants to produce a symbolic label for a 

given nonsymbolic representation. We found that children were more accurate at choosing a 

symbolic label to match a nonsymbolic target than vice-versa. In fact, children were unable to 

map from a symbol to nonsymbolic representations when the ratio between the alternative 

nonsymbolic representations was 0.67, but they were able make the mapping in the opposite 

direction at the same ratio. This asymmetry in mapping ability might stem from the precision 

of each of the representations. Izard and Dehaene (2008) propose a model of the mapping 

between symbolic and nonsymbolic representations. They suggest that nonsymbolic 
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representations are encoded on an internal number line and symbolic representations are 

mapped onto this number line by means of a response grid – the number line is divided into 

segments each associated with a different verbal label. A symbolic stimulus is therefore 

associated with a precise point on the number line but nonsymbolic representations are 

approximate and therefore a given nonsymbolic stimulus probabilistically activates a region 

of the number line according to a Gaussian distribution. The mapping task used in the present 

studies involves three quantities: the target and two alternatives. The symbolic to 

nonsymbolic version of the mapping task involves one precise and two approximate regions 

of the number line, while the nonsymbolic to symbolic version of the mapping task involves 

one approximate and two precise regions of the number line.  As a result children may be 

more accurate at the nonsymbolic to symbolic version, which involves fewer approximate 

representations. The disadvantage of dealing with two approximate representations will be 

greater when there is greater overlap of the distributions of activation. This would lead to the 

interaction between direction of mapping and difficulty ratio observed in both Studies 1 and 

2. 

We found that children’s ability to compare both nonsymbolic and symbolic 

representations was related to their knowledge of school mathematics. This extends previous 

work that has found that the symbolic distance effect but not the nonsymbolic distance effect 

predicted performance on standardised tests of mathematics (Holloway & Ansari, 2008b). In 

the present study we also found that the symbolic distance effect but not the nonsymbolic 

distance was related to children’s performance on a test of school mathematics. However, 

when children’s overall accuracy on the comparison tasks was considered rather than the 

distance effect, both symbolic and nonsymbolic comparison accuracy was related to 

mathematics performance.  The difference in these patterns of relationships might stem from 

the different measures used. While accuracy on comparison tasks assess children’s abilities in 
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making comparisons between symbolic or nonsymbolic representations, the distance effect 

indexes children’s difficulties in making certain comparisons. Although the distance effect is 

an important element of some aspects of children’s representations, it does not fully capture 

their ability at processing these representations. It is important, therefore, that multiple 

indices of children’s nonsymbolic system are used in future research, as a single measure 

such as the distance effect does not give the full picture of the role of the nonsymbolic system 

in mathematics.  

We found that children’s ability to map between symbolic and nonsymbolic 

representations was related to their performance on the school mathematics test, over and 

above the influence of performance on the two comparison tasks. The ability to map directly 

between representations is therefore an important basic numerical skill, and is not fully 

captured by performance on a symbolic comparison task. Performance on symbolic 

comparison tasks should not therefore be used as a sole index of an individual’s ability to 

map between these representations. The influence of children’s mapping scores on their 

mathematics test performance was found in the hierarchical regression models despite the 

lack of a simple correlation between the mathematics test and mapping task. Mapping score 

was a significant predictor only once performance on the comparison tasks was controlled 

for. This suggests that there is a complex relationship amongst these variables such that 

mapping score interacts with performance on the comparison tasks. It is possible that 

children’s differing ability to compare symbolic and nonsymbolic stimuli masks the 

relationship between mapping skills and mathematics test results because the ability to 

distinguish between nonsymbolic stimuli is an important prerequisite to being able to 

accurately map those stimuli onto symbolic representations.     

How might mapping ability be related to performance of symbolic mathematics? 

More precise mapping between the symbolic and nonsymbolic systems could allow children 
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to more effectively harness the power of the nonsymbolic system when comparing and 

manipulating symbolic representations. This in turn may lead to more accurate performance 

of mathematics. Moreover, Booth & Siegler (2008) found that improved mapping (between 

symbolic and number line representations of quantity) was not only related to children’s 

performance of mathematics but also predicted their ability to learn new arithmetic skills. 

This might suggest that improving the relationship between children’s nonsymbolic and 

symbolic representations more generally might help in the early stages of learning 

mathematics.  

An alternative interpretation of the relationship between mapping ability and 

performance of symbolic mathematics is that improved knowledge of the symbolic system 

could lead children to be able to map more precisely between symbolic and nonsymbolic 

representations. Lipton & Spelke (2005) found that 5-year-old children who had good 

knowledge of the verbal counting system had better mapping ability than children of the 

same age whose knowledge of the counting system was poor. The current study is unable to 

establish the causal direction of this relationship and so future research is needed. 

Over the early years of school mathematics instruction children acquire greater 

knowledge of the symbolic system, and also show development in the ability to manipulate 

and map between representations of quantity. We have shown that these improvements are 

related, but the causal direction of this relationship is as yet undetermined. Discovering 

whether increased ability to manipulate symbolic representations leads to improved mapping 

between the symbolic and nonsymbolic systems, or whether improved mapping between 

these systems leads to an improvement in symbolic number skill is a valuable aim for future 

research that may have important implications for mathematics education. 
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Table 1: 

Numerosities used in mapping task for both symbolic to nonsymbolic and nonsymbolic to 

symbolic problems. 

Ratio Target Distractor 

0.5 

21 

26 

30 

34 

40 

44 

42 

13 

60 

17 

80 

22 

0.67 

20 

25 

31 

34 

40 

47 

30 

17 

46 

22 

60 

32 
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Table 2: 

Hierarchical regression models predicting performance on test of school mathematics. 

Model Predictor variables β Change in R2  
Significance of R2 

change 

1 Nonsymbolic comparison accuracy 

Symbolic comparison accuracy 

Mapping accuracy 

.349 

.434 

.325 

.122 

.155 

.092 

p = .047 

p = .017 

p = .049 

2 Symbolic comparison accuracy 

Nonsymbolic comparison accuracy 

Mapping accuracy 

.504 

.167 

.325 

.254 

.023 

.092 

p = .003 

p = .335 

p = .049 

Outcome variable = accuracy on maths test 
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Figure captions 

Figure 1. Children’s accuracy on the mapping task by ratio and direction of mapping in a) 

Study 1 and b) Study 2. Solid lines indicate data from Year 2 children and dashed lines 

indicate data from Year 4 children. 

Figure 2. Mean reaction time by numerical distance for symbolic and nonsymbolic 

comparisons (error bars give s.e.m.).  

Figure 3. Relationship between numerical distance effect (NDE) for symbolic comparison 

task and performance on test of school mathematics. 

Figure 4. Relationship between accuracy on symbolic and nonsymbolic comparison tasks and 

performance on test of school mathematics.
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