Loughborough University
Browse

Citrulline malate fails to improve repeated 300 m swimming times in highly trained swimmers

Download (1.1 MB)
journal contribution
posted on 2025-02-27, 10:26 authored by Josh W Newbury, Matthew Cole, Stephen BaileyStephen Bailey, Adam L Kelly, Lewis A Gough

Citrulline malate (CM) has been touted as a nutritional ergogenic aid for sports performance, with purported mechanisms of increased muscle blood flow, ammonia clearance, and adenosine triphosphate resynthesis. Combined, these physiological benefits may be best applied to whole-body endurance exercises, such as swimming, though this postulate has not yet been explored. In a double-blind, randomised, and crossover design, 11 national-level swimmers (age: 17 ± 3 years, height: 1.71 ± 0.05 m, body mass: 60.6 ± 8.3 kg) from a high-performance swimming club ingested either 15 g CM or a placebo (PLA) 60 min before six × 300 m freestyle bouts (at 4.5 min intervals). Blood lactate, blood pressure, and ratings of perceived exertion were measured at baseline, 60 min post-ingestion, and immediately post-exercise. Neither mean 300 m swimming time (CM: 212.0 ± 9.6 vs. PLA: 212.8 ± 7.7 s, p = 0.683, g = 0.09) nor any individual swimming bouts (p = 0.679, Pŋ2 = 0.02) were improved with CM ingestion. Moreover, no differences in any physiological or subjective measures were identified between conditions (all p > 0.05). Whether the proposed CM mechanisms were active was unclear as more direct physiological measures (i.e., plasma NO, ammonia) may have been required. Resultantly, these observations do not support an ergogenic effect of acute CM ingestion in highly trained swimmers.

History

School

  • Sport, Exercise and Health Sciences

Published in

Physiologia

Volume

4

Issue

2

Pages

243 - 252

Publisher

MDPI

Version

  • VoR (Version of Record)

Rights holder

© The Author(s)

Publisher statement

This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/)

Acceptance date

2024-06-07

Publication date

2024-06-13

Copyright date

2024

eISSN

2673-9488

Language

  • en

Depositor

Dr Stephen Bailey. Deposit date: 13 August 2024

Usage metrics

    Loughborough Publications

    Categories

    No categories selected

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC