posted on 2021-03-04, 11:24authored byRoss Vander Vorste, Rachel Stubbington, Vicenç Acuña, Michael T Bogan, Núria Bonada, Núria Cid, Thibault Datry, Richard Storey, Paul WoodPaul Wood, Albert Ruhí
Climate change is altering the water cycle globally, increasing the frequency and magnitude of floods and droughts. An outstanding question is whether biodiversity responses
to hydrological disturbance depend on background climatic context – and if so, which
contexts increase vulnerability to disturbance. Answering this question requires comparison of organismal responses across environmental gradients. However, opportunities to track disturbed communities against an undisturbed baseline remain rare. Here
we gathered a global dataset capturing responses of aquatic invertebrate communities
to river drying, which includes 112 sites spanning a gradient of climatic aridity. We
measured the effects of river drying on taxonomic richness and temporal β-diversity
(turnover and nestedness components). We also measured the relative abundance of
aquatic invertebrates with strategies that confer resilience (or resistance) to drying.
Contrary to our expectations, we found that taxonomic richness recovered from drying similarly across the aridity gradient. The turnover component of β-diversity (i.e.
species replacements over time) largely accounted for differences in community composition before versus after drying. However, increasing aridity was associated with
greater nestedness-driven compositional changes at intermittent sites – that is, after
drying communities became subsets of those before drying. These results show that
climatic context can explain variation in community responses to the same hydrological disturbance (drying), and suggest that increased aridity will constrain biodiversity
responses at regional scales. Further consideration of the climatic context in hydroecological research may help improve predictions of the local impacts of hydrological disturbance by identifying climate regions where communities are more (or less) sensitive
to extremes, including river drying events.
This is an Open Access Article. It is published by Wiley under the Creative Commons Attribution 4.0 Unported Licence (CC BY). Full details of this licence are available at: http://creativecommons.org/licenses/by/4.0/