This paper investigates the effect of surface texturing in a partial pad journal bearing through a series of controlled experiments at operating conditions, promoting mixed or boundary regimes of lubrication. Improvements to load carrying capacity are observed under certain operating conditions. A comprehensive computational finite volume multiphase fluid dynamics analysis, including vapour transport equation and modified finite-size cavity Rayleigh-Plesset model, is used to study the effect of indented surface textures in the microscale contact domain and within the individual textures themselves. The results show improved conditions with a textured journal through promotion of micro-hydrodynamic effect, delaying the effect of lubricant rupture, thus extending the effective load bearing region. A very good agreement is obtained between measurements and predictions.
Funding
The authors would like to express their gratitude to the financial support provided by Lloyd's Register Foundation (LRF), which is extended through the International Institute for Cavitation Research (ICR: http://www.cavitation-institute.org/) to this project. The authors would also like to acknowledge the UK Engineering and Physical Sciences Research Council (EPSRC) for the Encyclopaedic Program Grant (www.encycloapedic.org) as some of their research findings are used in this research.
History
School
Mechanical, Electrical and Manufacturing Engineering
Published in
Lubrication Sciences
Citation
MORRIS, N.J. ... et al, 2018. Combined experimental and multiphase computational fluid dynamics analysis of surface textured journal bearings in mixed regime of lubrication. Lubrication Science, 30, pp. 161–173.
This work is made available according to the conditions of the Creative Commons Attribution 4.0 International (CC BY 4.0) licence. Full details of this licence are available at: http://creativecommons.org/licenses/ by/4.0/
Acceptance date
2017-12-11
Publication date
2018-01-31
Notes
This is an Open Access Article. It is published by Wiley under the Creative Commons Attribution 4.0 International Licence (CC BY). Full details of this licence are available at: http://creativecommons.org/licenses/by/4.0/