Comparison of plane-stress, generalized-plane-strain and 3D FEM elastic–plastic analyses of thick-walled cylinders subjected to radial thermal gradient
In many industrial applications, thick-walled cylindrical components are subjected to high pressure and/or temperature. During the operation the cylinder wall may undergo elastic–plastic deformation. This paper presents plane-stress and plane-strain thermo-elastic–plastic stress analyses of thick-walled cylinders subjected to a radial thermal gradient. A three-dimensional finite element method (3D FEM) analysis of the thermo-elastic–plastic stresses in thick-walled cylinder is also carried out. The 3D FEM results are compared with the analytical plane stress and the generalized plane strain analyses in order to study the validity of these models on the basis of length to wall-thickness ratio of cylinders. The plane stress and generalized plane strain analyses are based on the Tresca yield criterion and associated flow rule. The strain hardening behavior of the material of the cylinder is taken into account. It is observed that for the length to wall thickness ratio of more than 6, the generalized plane strain analysis can provide sufficiently accurate results. Similarly, for the length to wall thickness ratio of less than 0.5, plane stress analysis can be used. When the length to wall thickness ratio is more than 0.5 but less than 6, a three-dimensional analysis is needed.
Funding
This research was supported by funding from the Engineering and Physical Sciences Research Council (UK) through grant
EP/K028316/1 and Department of Science and Technology (India) through grant DST/RC-UK/14-AM/2012, project Modeling of Advanced Materials for Simulation of Transformative
Manufacturing Processes (MAST).
History
School
Mechanical, Electrical and Manufacturing Engineering
Published in
International Journal of Mechanical Sciences
Volume
131-132
Pages
744 - 752
Citation
KAMAL, S.M. ...et al., 2017. Comparison of plane-stress, generalized-plane-strain and 3D FEM elastic–plastic analyses of thick-walled cylinders subjected to radial thermal gradient. International Journal of Mechanical Sciences, 131-132, pp. 744-752.
This work is made available according to the conditions of the Creative Commons Attribution 4.0 International (CC BY 4.0) licence. Full details of this licence are available at: http://creativecommons.org/licenses/by/4.0/
Acceptance date
2017-07-20
Publication date
2017
Notes
This is an open access article under the CC BY license. (http://creativecommons.org/licenses/by/4.0/)