We have used Hertzian and Vickers indentation to investigate contact damage in sintered SiC ceramics, one consisting of uniform, fine-grains and the other a coarse, elongated grain structure. Cracking-resistance measured by Hertzian indentation, showed no discernible difference, nor did the Vickers hardness. However, numerical analysis of the Vickers indentation size effect, performed using the proportional specimen resistance model, indicates 77.3% greater surface energy, mostly realised through cracking, is experienced by heterogeneous SiC per unit area of indentation impression. This is typified by an observable increase in the number of radial cracks generated around Vickers impressions, which has been found to artificially increase the K IC determined by Vickers indentation fracture. Quantitative measurements of pre-existing flaws by Hertzian indentation show that heterogeneous SiC retains a higher density of larger flaws. Relationships between the differences in cracking around Vickers indents and the pre-existing flaw populations of these two SiC ceramics are discussed.
History
School
Aeronautical, Automotive, Chemical and Materials Engineering
Department
Materials
Published in
Journal of the European Ceramic Society
Citation
WADE, J. ... et al, 2014. Contact damage of silicon carbide ceramics with different grain structures measured by Hertzian and Vickers indentation. Journal of the European Ceramic Society, 35 (6), pp.1725–1736.
This work is made available according to the conditions of the Creative Commons Attribution 4.0 International (CC BY 4.0) licence. Full details of this licence are available at: http://creativecommons.org/licenses/ by/4.0/
Publication date
2015
Notes
This is an Open Access Article. It is published by Elsevier as Open Access at http://dx.doi.org/10.1016/j.jeurceramsoc.2014.12.030