Loughborough University
Browse
- No file added yet -

Contact force estimation in the wheel/rail interface for curving scenarios through regions of reduced adhesion

Download (376.64 kB)
journal contribution
posted on 2017-11-10, 14:39 authored by Peter HubbardPeter Hubbard, Nabilah Farhat, Christopher Ward, G.A. Amarantidis
© 2017. Regions of extreme low-adhesion between the wheel and rail can cause critical problems in traction and braking. This can manifest in operational issues such as signals being passed at danger, or pessimistic network wide responses to mitigate for localised issues. Poor traction conditions can be caused by oil contaminants, rain, ice, condensation of water droplets (micro-wetting) or leaves on the line, where compressed leaf contamination can cause a rapid decrease in adhesion. The complexity of the problem arises as a result of the inability to directly measure and monitor all the factors involved. There remains a lack of real-time information regarding the state and location of low-adhesion areas across rail networks. On-board low adhesion detection technology installed to in-service vehicles is a suggested method to capture up-to-date adhesion information network wide and minimise significant disruptions and cancellations in railway schedules. This paper extends a principle of a model-based estimation technique previously developed in straight track running for operating in a curving scenario. The vehicle model of focus here will be a high-fidelity, multi-body physics representation of a full-vehicle.

History

School

  • Mechanical, Electrical and Manufacturing Engineering

Published in

Mechatronics

Citation

HUBBARD, P.D. ...et al., 2017. Contact force estimation in the wheel/rail interface for curving scenarios through regions of reduced adhesion. Mechatronics, 50, pp.321-327.

Publisher

© Elsevier

Version

  • AM (Accepted Manuscript)

Publisher statement

This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/

Acceptance date

2017-06-30

Publication date

2017

Notes

This paper was accepted for publication in the journal Mechatronics and the definitive published version is available at https://doi.org/10.1016/j.mechatronics.2017.06.013

ISSN

0957-4158

Language

  • en

Usage metrics

    Loughborough Publications

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC