accepted_version.pdf (1.4 MB)
Download fileContinuation methods for time-periodic travelling-wave solutions to evolution equations
journal contribution
posted on 2018-11-19, 11:27 authored by Te-Sheng Lin, Dmitri TseluikoDmitri Tseluiko, Mark G. Blyth, Serafim Kalliadasis© 2018 Elsevier Ltd A numerical continuation method is developed to follow time-periodic travelling-wave solutions of both local and non-local evolution partial differential equations (PDEs). It is found that the equation for the speed of the moving coordinate can be derived naturally from the governing equations together with a condition that breaks the translational symmetry. The derived system of equations allows one to follow the branch of travelling-wave solutions as well as solutions that are time-periodic in a frame of reference travelling at a constant speed. Finally, we show as an example the bifurcation and stability analysis of single and double-pulse waves in long-wave models of electrified falling films.
Funding
We acknowledge financial support by the EPSRC under grants EP/J001740/1 and EP/K041134/1 and by the Ministry of Science and Technology of Taiwan under research grant MOST-103-2115-M-009-015-MY2.
History
School
- Science
Department
- Mathematical Sciences