Control of the spatial homogeneity of pore surface chemistry in particulate activated carbon
journal contribution
posted on 2016-01-15, 09:18authored bySaeid Sedghi, S. Hadi Madani, Cheng Hu, Ana Silvestre-Albero, William Skinner, Philip Kwong, Phillip Pendleton, Ronald J. Smernik, Francisco Rodriguez-Reinoso, Mark Biggs
We show here that a physical activation process that is diffusion-controlled yields an activated carbon whose chemistry – both elemental and functional – varies radially through the particles. For the ∼100 μm particles considered here, diffusion-controlled activation in CO2 at 800 °C saw a halving in the oxygen concentration from the particle periphery to its center. It was also observed that this activation process leads to an increase in keto and quinone groups from the particle periphery towards the center and the inverse for other carbonyls as well as ether and hydroxyl groups, suggesting the two are formed under CO2-poor and -rich environments, respectively. In contrast to these observations, use of physical activation processes where diffusion-control is absent are shown to yield carbons whose chemistry is radially invariant. This suggests that a non-diffusion limited activation processes should be used if the performance of a carbon is dependent on having a specific optimal pore surface chemical composition.
History
School
Science
Department
Chemistry
Published in
CARBON
Volume
95
Pages
144 - 149 (6)
Citation
SEDGHI, S. ...et al., 2015. Control of the spatial homogeneity of pore surface chemistry in particulate activated carbon. Carbon, 95, pp. 144-149.
This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/