Loughborough University
Browse
- No file added yet -

Crimping and deployment of metallic and polymeric stents - finite element modelling

Download (2.29 MB)
journal contribution
posted on 2017-02-02, 14:01 authored by Alessandro Schiavone, Tianyang Qiu, Liguo Zhao
Aim: This paper aims to compare the mechanical performance of metallic (Xience) and bioresorbable polymeric (Elixir) stents during the process of crimping and deployment. Methods: Finite element software ABAQUS was used to create the geometrical models and meshes for the balloon, stent and diseased artery. To simulate the crimping of stents, 12 rigid plates were generated around the stent and subjected to radially enforced displacement. The deployment of both stents was simulated by applying internal pressure to the balloon, where hard contacts were defined between balloon, stent and diseased artery. Results: Elixir stent exhibited a lower expansion rate than Xience stent during deployment. The stent diameter achieved after balloon deflation was found smaller for Elixir stent due to higher recoiling. Lower level of stresses was found in the plaque and artery when expanded by Elixir stent. Reduced expansion, increased dogboning and decreased vessel stresses were obtained when considering the crimping-generated residual stresses in the simulations. Conclusion: There is a challenge for polymeric stents to match the mechanical performance of metallic stents. However, polymeric stents impose lower stresses to the artery system due to less property mismatch between polymers and arterial tissues, which could be clinically beneficial.

History

School

  • Mechanical, Electrical and Manufacturing Engineering

Published in

Vessel Plus

Volume

Jan 19. [Online First]

Pages

1 - 10 (10)

Citation

SCHIAVONE, A., QIU, T. and ZHAO, L., 2017. Crimping and deployment of metallic and polymeric stents - finite element modelling. Vessel Plus, Jan 19. [Online First].

Publisher

© The Authors. Published by OEA Publishing

Version

  • VoR (Version of Record)

Publisher statement

This work is made available according to the conditions of the Creative Commons Attribution 4.0 International (CC BY 4.0) licence. Full details of this licence are available at: http://creativecommons.org/licenses/ by/4.0/

Acceptance date

2017-01-03

Publication date

2017-03-31

Notes

This is an Open Access Article. It is published by OEA Publishing under the Creative Commons Attribution 4.0 Unported Licence (CC BY). Full details of this licence are available at: http://creativecommons.org/licenses/by/4.0/

Language

  • en

Usage metrics

    Loughborough Publications

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC