Loughborough University
Browse

Current trends in flow cytometry automated data analysis software

Download (2.18 MB)
journal contribution
posted on 2021-02-23, 11:44 authored by Melissa Cheung, Jonathan Campbell, Liam Whitby, Rob ThomasRob Thomas, Julian Braybrook, Jon PetzingJon Petzing
Automated flow cytometry (FC) data analysis tools for cell population identification and characterisation are increasingly being used in academic, biotechnology, pharmaceutical and clinical laboratories. Development of these computational methods are designed to overcome reproducibility and process bottleneck issues in manual gating, however the take-up of these tools remains (anecdotally) low.
Here, we performed a comprehensive literature survey of state-of-the-art computational tools typically published by research, clinical, and biomanufacturing laboratories for automated FC data analysis and identified popular tools based on literature citation counts. Dimensionality reduction methods ranked highly, such as generic t-distributed stochastic neighbour embedding (t-SNE) and its initial Matlab based implementation for cytometry data viSNE. Software with graphical user interfaces also ranked highly, including PhenoGraph, SPADE1, FlowSOM and Citrus, with unsupervised learning methods outnumbering supervised learning methods, and algorithm type popularity spread across K-Means, hierarchical, density-based, model-based, and other classes of clustering algorithms.
Additionally, to illustrate the actual use typically within clinical spaces alongside frequent citations, a survey issued by UK NEQAS Leucocyte Immunophenotyping to identify software usage trends among clinical laboratories was completed. The survey revealed 53% of laboratories have not yet taken up automated cell population identification methods, though amongst those that have, Infinicyt software is the most frequently identified. Survey respondents considered data output quality to be the most important factor when using automated FC data analysis software, followed by software speed and level of technical support.
This review found differences in software usage between biomedical institutions, with tools for discovery, data exploration and visualisation more popular in academia, whereas automated tools for specialised targeted analysis that apply supervised learning methods were more used in clinical settings.

Funding

EPSRC/MRC Doctoral Training Centre for Regenerative Medicine at Loughborough University (EP/L105072/1)

History

School

  • Mechanical, Electrical and Manufacturing Engineering

Published in

Cytometry Part A

Volume

99

Issue

10

Pages

1007-1021

Publisher

Wiley

Version

  • VoR (Version of Record)

Rights holder

© The Authors

Publisher statement

This is an Open Access Article. It is published by Wiley under the Creative Commons Attribution 4.0 International Licence (CC BY 4.0). Full details of this licence are available at: https://creativecommons.org/licenses/by/4.0/

Acceptance date

2021-01-28

Publication date

2021-02-19

Copyright date

2021

ISSN

1552-4922

eISSN

1552-4930

Language

  • en

Depositor

Dr Jon Petzing. Deposit date: 28 January 2021

Usage metrics

    Loughborough Publications

    Categories

    No categories selected

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC